Hazard Assessment Report

Ver. 1.1

No. 3

1,2-Dichloroethane

Cabinet order number in the gazetted list

(Law for PRTR and Promotion of Chemical Management): 1-116

CAS registry number: 107-06-2

New Energy and Industrial Technology Development Organization

(NEDO)

Outsourcer:

Chemicals Evaluation and Research Institute (CERI) National Institute of Technology and Evaluation (NITE)

Contents

1. Chemical substance identification information	1
1.1 Material name: 1,2-Dichloroethane	1
1.2 Class reference number in the gazetted list (Chemical Substance Control Law)	1
1.3 Cabinet order number in the gazetted list (Law for PRTR and Promotion of Chemical Management)	1
1.4 CAS registry number	1
1.5 Structural formula	1
1.6 Chemical formula: C ₂ H ₄ Cl ²	1
1.7 Molecular weight: 98.96	1
2. General information	1
2.1 Synonyms	1
22 Purity	1
2.3 Impurity	1
24 Additives/Stabilizers	1
2.5 Current regulations in Japan	1
3. Physical-Chemical Properties	2
4. Source information	3
4.1 Production and import, etc.	3
4.2 Use information	3
4.3 Release Sources Information	4
4.3.1 Release sources for 1,2-dichloroethane under the Law for PRTR and Promotion of Chemical Management (PR	IRLaw)
4.3.1 Release sources for 1,2-dichloroethane under the Law for PRTR and Promotion of Chemical Management (PR	
	4
	4
4.3.2 Other release sources	4 5 6
4.3.2 Other release sources	4 5 6 6
4.32 Other release sources	4
4.3.2 Other release sources	4 5 6 6 6 6
4.3.2 Other release sources	4
4.32 Other release sources	4
432 Other release sources	
4.32 Other release sources	
4.32 Other release sources	
4.32 Other release sources	
4.3.2 Other release sources	
4.32 Other release sources	
432 Other release sources 44 Estimated release routes 5. Environment fate 5.1 Stability in the atmosphere 52 Underwater stability 52.1 Nonbiodegradability 52.2 Biodegradability 52.3 Elimination through sewage treatment 53 Behavior in the natural water environment 54 Bio-concentration 6. Impact on aquatic living creatures	
 4.3.2 Other release sources	
432 Other release sources	

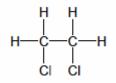
6.2.1 Toxic impact on microorganisms	14
6.2.2 Toxic impact on plants	15
6.2.3 Toxic impact on animals	15
6.3 Impact on living creatures in the environment (summary)	15
7. Human health effects	16
7.1 In vivo fate	16
7.1.1 Absorption	16
7.1.2 Distribution	17
7.1.3 Metabolism and excretion	17
7.2 Epidemiological studies and case reports	37
7.3 Toxicity to laboratory animals	43
7.3.1 Acute toxicity	43
7.3.2 Stimulus and corrosion	43
7.3.3 Sensitization	44
7.3.4 Repeated dose toxicity	44
7.3.5 Reproductive and developmental toxicity	50
7.3.6 Genetic Toxicity	54
7.3.7 Carcinogenicity	60
7.4 Effects on Human Health (Summary)	66
Reference	68
Name of the implementing agency, supervisor, and person in charge of conducting hazard assessment	77
External reviewers of Chemical substance Hazard Assessment Report	77

1. Chemical substance identification information

1.1 Material name: 1,2-Dichloroethane

1.2 Class reference number in the gazetted list (Chemical Substance Control Law)

: 2-54


1.3 Cabinet order number in the gazetted list (Law for PRTR and Promotion of Chemical Management)

: 1-116

1.4 CAS registry number

: 107-06-2

1.5 Structural formula

1.6 Chemical formula: C₂H₄Cl²

1.7 Molecular weight: 98.96

- 2. General information
- 2.1 Synonyms

Ethylene dichloride

2.2 Purity

>99.5% (General products)

2.3 Impurity	
Nonvolatile component (<0.002%) (General products)	
	(NITE, 2002)
2.4 Additives/Stabilizers	
No additives/stabilizers (General products)	
	(NITE, 2002)
2.5 Current regulations in Japan	
Law for PRTR and Promotion of Chemical Management: Class I PRTR Chemica	ıls
Chemical Substance Control Law: Designated Chemical Substance (Type II Mor	nitored Chemical
Substance)	
Fire defense law: Class 1 Petroleum in Hazard Category 4	
Industrial Safety and Health Law:	
Class-1 organic solvents	

(NITE, 2002)

Dangerous substances (Inflammable Substances)

Harmful substances whose names, etc., are to be indicated

Harmful substances whose name, etc., are to be noticed

Chemical substances made public

Control concentration: 10 ppm

Basic Environment Low:

Environmental criteria related to water pollution: 0.004 mg/L

Environmental criteria related to water pollution of groundwater: 0.004 mg/L

Environmental criteria related to soil pollution: 0.004 mg/L (Concentration of test solutions in dissolution test)

Sewerage Law:

Water quality standard: 0.04 mg/L

Water pollution control law: Harmful substances

Effluent standards: 0.04 mg/L

Air Pollution Control Law: Harmful air pollutant (Substances Requiring Priority Action)

Soil Contamination Countermeasures Law: Specified chemical substances (Substances Requiring Priority Action)

Law on the Prevention of Marine Pollution and Maritime Disaster: Harmful liquid substances, Group B

Ship Safety Law: Inflammable liquid

Civil Aeronautics Law: Inflammable liquid

Port Regulation Law: Inflammable liquid

Waste Management Law: Special Management Industrial Waste

Criteria: 0.4 mg/L (waste acid/base, content), 0.04 mg/L (Sludge, etc., elution volume)

3. Physical-Chemical Properties

Appearance: Colorless liquid (U.S. NLM: HSDB, 2001)

Melting point: -35.7°C (IPCS, 1999)

Boiling point: 83-84°C (Merck, 2001)

Flash point: 13°C (direct vent type) (IPCS, 1999; Merck, 2001)

 18° C (unvented type) (Merck, 2001)

Ignition point: 413°C (IPCS, 1999)

Explosion limit: 6.2-16 vol% (in air) (IPCS, 1999)

Specific gravity: 1.2569 (20°C/4°C) (Merck, 2001)

Vapor density: 3.42 (Air=1)

Vapor pressure: 5.3 kPa (10°C), 8.1 kPa (20°C), 14.0 kPa (30°C) (Verschueren, 2001)

Partition coefficient: Octanol/water Partition coefficient log Kow=1.48 (measured), 1.83 (caluculated) (SRC: KowWin, 2002)

Dissociation constant: No dissociation group

Spectrum: Major MS fragment

m/z 62 (base peak= 1.0), 2.7 (0.91), 49 (0.40), 64 (0.32), 63 (0.19) (U.S. NIST, 1998)

Adsorption/Desorption properties: Soil sorption coefficient Koc=44 (estimated) (SRC: KowWin, 2002)

Solubility:

Water: 8.6 g/L (25°C) (U.S. NLM: HSDB, 2001)

Ethanol, chloroform and ether: Voluntarily soluble (Merck, 2001)

Henry's Constant: 120 Pa \cdot m³/mol (1.18 x 10⁻⁴ atm \cdot m³/mol) (23°C, measured) (SRC: KowWin, 2002)

Conversion factor: (Air, 20°C) 1 ppm=4.11 mg/m³, 1 mg=0.243 ppm

4. Source information

4.1 Production and import, etc.

Table 4-1 shows the production and import, etc. of 1,2-dichloroethane for the five years from 1997 to 2001 (Production: Ministry of Economy, Trade and Industry, 2002; Import and export: Ministry of Finance, 2003). The production and import of 1,2-dichloroethane have been on the decline, while export has increased remarkably since 2000.

Table 4-1 Production and import, etc. of 1,2-dichloroethane (ton)

Year	1997	1998	1999	2000	2001
Production	3,491,372	3,491,292	3,501,897	3,430,642	3,274,975
Import	695,714	570,265	552,755	416,711	383,448
Export	392	315	687	29,466	20,548
Domestic	4,186,694	4,061,242	4,053,965	3,817,887	3,637,875
supplies					

(Production: Ministry of Economy, Trade and Industry, 2002; Import and export: Ministry of Finance, 2003)

4.2 Use information

1,2-dichloroethane is primarily used as a synthetic raw material (for vinyl chloride monomer, ethylenediamine, polyamino resin, and ion-exchange resin). It is also used for film detergent, solvent (organic synthesis, vitamin extracts), pesticide, and fumigant purposes (The Chemical Daily, Co., Ltd., 2003).

4.3 Release Sources Information

4.3.1 Release sources for 1,2-dichloroethane under the Law for PRTR and Promotion of Chemical Management (PRTR Law)

According to the "FY2001 Survey Results on Reported Chemical Release and Transfer, and Non-reported Chemical Release" (Ministry of Economy, Trade and Industry, Ministry of the Environment, 2004a, b) (hereinafter referred to as FY2001 PRTR data) under the Law for PRTR and Promotion of Chemical Management, in the year under review, the amount of 1,2-dichloroethane released or transferred by reporting operators nationwide totaled 915 tons into the air, 4 tons into public water bodies, 1,534 tons as waste, and 19 kg to sewage. There was no release of 1,2-dichloroethane into the soil. The amount of 1,2-dichloroethane released by non-reporting operators was 10 tons in target industries, while not estimated for other industries, households, and movable bodies.

a. Release and transfer in target industries

Table 4-2 shows the amount of 1,2-dichloroethane released and transferred to environmental media (air, water, soil), by type of target industry. Figures were obtained from the FY2001 PRTR data.

When estimating the amount of 1,2-dichloroethane released by non-reporting operators, the Ministry of Economy, Trade and Industry and the Ministry of the Environment did not classify the data by type of environmental medium. Therefore, we estimated the amount of 1,2-dichloroethane released into each environmental medium, assuming that the percent distribution for 1,2-dichloroethane released by non-reporting operators in each industry, by type of environmental media, was the same as that by reporting operators. (National Institute of Technology and Evaluation, 2004).

Table 4-2 Release, etc. of 1,2-dichloroethane to environmental media, by type of target industry(ton/year)

Type of industry	Repo	Reporting operators				Non-reporting			Total	release	by
					C		operators			g	and
	Relea	Release		Transfer		Release (estimates) ¹⁾			non-reporting		
									operator	ſS	
	Air	Water	Soil	Sewage	Wastes	Air	Water	Soil	Total	Percen	tage
									release	(%)	
									3)		
Chemical	806	3	0	<0.5	1,530	10	<0.5	0	819	88	

industry										
Warehouse	82	0	0	0	1	-	-	-	82	9
industry										
Metal products	12	0	0	0	0	<0.5	0	0	12	1
industry										
Oil/coal	8	0	0	0	0	-	-	-	8	1
products										
industry										
Other	6	0	0	0	3	< 0.5	0	0	6	1
manufacturing										
industry										
Others ²⁾	1	2	0	0	<0.5	<0.5	0	0	3	0
Total ³⁾	915	4	0	<0.5	1,534	10	<0.5	0	930	100

(National Institute of Technology and Evaluation, 2004)

- 1. We estimated the amount of 1,2-dichloroethane released into each environmental medium, assuming that the percent distribution for 1,2-dichloroethane released by non-reporting operators in each industry, by type of environmental media, was the same as that by reporting operators.
- 2. "Others" indicates the total release of 1,2-dichloroethane in the target industries other than the above five industries.
- 3. Figures are rounded down in this table. Therefore, actual total amounts in each category may be different from the figures above.
- -: Not estimated.

The release and transfer of less than 0.5 ton was mentioned as "<0.5" without exception.

According to the amount of 1,2-dichloroethane produced in 2001 and the basic unit of release in the production process (Japan Chemical Industry Association, 2002), the amount of 1,2-dichloroethane released during production was estimated to be 85 tons into the air (National Institute of Technology and Evaluation, 2004). Therefore, the amount of released 1,2-dichloroethane, cited from the FY2001 PRTR data, is considered to be greater in use than during production.

b. Release in non-target industries, or from households and movable bodies

The FY 2001 PRTR data did not estimate the amount of 1,2-dichloroethane released in non-target industries, or from households and movable bodies (Ministry of Economy, Trade and Industry, Ministry of the Environment, 2003b).

4.3.2 Other release sources

1,2-dichloroethane used for pesticide or fumigant purposes can be released into the air at the site of use. However, as there are no data available for the total amount of 1,2-dichloroethane used for pesticide purposes nationwide, the FY2001 PRTR data does not cover these release sources (Ministry of Economy, Trade and Industry, Ministry of the Environment, 2003b).

4.4 Estimated release routes

As outlined in the use information above, 1,2-dichloroethane is primarily used as a synthetic raw material for vinyl chloride monomer, etc. According to that information and FY2001 PRTR data, 1,2-dichloroethane is considered to be primarily released during the use of 1,2-dichloroethane itself or products that contain 1,2-dichloroethane.

In the emission scenario, the amount of 1,2-dichloroethane released nationwide for a year is presumed to be 925 tons into the air and 4 tons into the water. The amount of 1,2-dichloroethane released into the water includes 1,2-dichloroethane released by sewage plants and waste disposal facilities.

5. Environment fate

5.1 Stability in the atmosphere

a. Reaction with OH radical

In the troposphere, reaction rate constant between 1,2-dichloroethane and the OH radical is 2.48×10^{-13} cm³/molecule/second (measured at 25°C). (SRC:AopWin, 2001). Supposing the concentration of the OH radical is 5×10^5 to 1×10^6 molecules/cm³, the half-life of 1,2-dichloroethane is estimated to be one to two months.

b. Reaction with ozone

As far as we know, there is no report available on the reaction of 1,2-dichloroethane with ozone.

c. Reaction with nitrate radicals

As far as we know, there is no report available on the reaction of 1,2-dichloroethane with nitrate radicals.

5.2 Underwater stability

5.2.1 Nonbiodegradability

1,2-dichloroethane is stable with regard to hydrolysis, and its half-life at pH7 and 25° C is estimated to be 72 years (Barbash and Reinhard, 1989). This means that 1,2-dichloroethane cannot virtually be hydrolyzed in a general water environment.

5.2.2 Biodegradability

According to the results of a two-week test on biodegradability of 1,2-dichloroethane under aerobic conditions conducted in accordance with the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances, BOD-measured degradability of 1,2-dichloroethane at a concentration of 100 mg/L was found to be zero (BOD: biochemical oxygen demand) when activated sludge was 30 mg/L. Apparently, it seems difficult to biodegrade 1,2-dichloroethane. When TOC-measured (TOC: total organic carbon), the degradation rate registered 2%, while the rate became 1% when GC-measured (GC: gas chromatography). (Ministry of International Trade and Industry 1978)

Due to its characteristics of high stream pressure (8.1 kPa at 20°C. See Chapter 3.), it is possible for 1,2-dichloroethane to volatilize during a biodegradability test prior to adequate contact with microorganisms and acclimatization. Actually, during a test on 1,2-dichloroethane at concentrations of 5 and 10 mg/L in a flask placed at a fixed position, 20 to 63% of the entire amount disappeared within the first seven days, 5 to 27% of which was reported to have volatilized (Tabak et al., 1981).

Another test using microorganisms taken from activated sludge in a sewage plant successfully clarified the process of biodegradation of 1,2-dichloroethane. At first, ethylene chlorohydrin was generated through the process of dechlorination. Then, chloroacetic acid was generated from chloroacetaldehyde. Another dechlorination led to complete degradation, following the generation of glycolic acid. (Janssen et al., 1985)

On the contrary, there is a report that 1,2-dichloroethane was not degraded during a 35-day test conducted under anaerobic conditions. (Jafvert and Wolfe, 1987)

The above test results lead to the conclusion that 1,2-dichloroethane is biodegradable under aerobic conditions, when assisted by some biodegradability-facilitating conditions such as acclimatization.

5.2.3 Elimination through sewage treatment

Sewage treatment can eliminate 69 to 95% of the entire volume of 1,2-dichloroethane in waste water. (GDCh BUA, 1994)

5.3 Behavior in the natural water environment

1,2-dichloroethane has a high Henry constant of 120 Pa.m³/mol (at 23°C. See Chapter 3)

as well as a high steam pressure (8.1 kPa at 20°C. See Chapter 3). Therefore this substance, when discharged to the environment, is considered to mostly migrate to the atmosphere. When 1,2-dichloroethane is stirred underwater, its half-life ranges from 5 to 29 minutes, depending on depth and surface area. (Dilling et al., 1975)

5.4 Bio-concentration

No tests have been conducted yet on the tendency of concentrations of 1,2-dichloroethane in accordance with the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances. However, this substance is considered to be completely non-accumulative or only slightly accumulative, judging from test results on tetrachloroethylene conducted under the Law (Ministry of Economy, Trade and Industry, 1978). (This test on the tendency of concentrations of tetrachloroethylene conducted for the period of 6 weeks at the underwater concentration of 0.1 mg/L and 0.01 mg/L respectively showed that the concentration factor was 25.8 to 77.1 for 0.1 mg/L and 28.4 to 75.7 for 0.01 mg/L.)

1,2-dichloroethane tends not to be bio-accumulative. A test on the tendency of bio-concentrations of 1,2-dichloroethane using bluegill fish for 14 days shows that the bio-concentration coefficient is 2.0 and that its half-life is less than 2 days. (Barrows et al., 1980)

6. Impact on living creatures in the environment

6.1 Impact on aquatic living creatures

6.1.1 Toxic impact on microorganisms

Table 6-1 shows results of toxicity tests of 1,2-dichloroethene for microorganisms.

Toxicity of this substance has been reported on several species of bacteria. Among the reports on toxicity levels, the lowest value reported was a 48-hour EC_{50} value of 25mg/L (to inhibit generation of anaerobic gas) for Methanogen (Blum and Speece, 1991). Reports on protozoa include a 20-hour EC_5 value of 1,050mg/L (to inhibit reproduction) for Uronema parduczi (Bringmann and Kuhn, 1980a).

		c · ·
Table 6-1: Results of toxicity	tests of 1.2-dichloroethene	for microorganisms
rable o 1. Results of toxient	usis of 1,2 diemonocinene	ior microorgamsms

Species	Temperature (°C)	Endpo	oint	Concentration (mg/L)	Reference	
Bacteria	27	8-day	Inhibit	105 (n)	Bringmann &	ķ
Microcystis		threshold of	growth		Kuhn, 1976	

aeruginosa		toxicity 1)			
Pseudomonas putida	25	16 -hour threshold of toxicity 1)	Inhibit reproduction	135 (n)	Bringmann & Kuhn, 1977
Nitrosomonas	25	24-hour EC ₅₀	Inhibit consumption of ammonia	29 (n)	Blum & Speece, 1991
Methanogen	35	48-hour EC ₅₀	Inhibit generation of anaerobic gas	25 (n)	
Aerobic heterotroph	25, 35	15-hour EC ₅₀	Inhibit consumption of oxygen	470 (n)	
Photobacterium phosphoreum	15	5-minute EC ₅₀	Inhibit emission of	700 (n)	
phosphorean	ND	15-minute EC ₅₀	light	770 (n)	Freitag et al., 1994
<u>Protozoa</u> Entosiphon sulcatum	25	72-hour threshold of toxicity 2)	Inhibit reproduction	1,127 (n)	Bringmann & Kuhn, 1978
Uronema parduczi	25	20-hour threshold of toxicity 2)	Inhibit reproduction	1,050 (n)	Bringmann & Kuhn, 1980a
Chilomonas paramaecium	20	48-hour threshold of toxicity 2)	Inhibit reproduction	943 (n)	Bringmann & Kuhn, 1980b

ND: No data

(n): Nominal value

1) Concentration at which 3% of the volume in a test zone is affected(EC_3)

2) Concentration at which 5% of the volume in a test zone is affected(EC_5)

6.1.2 Toxic impact on algae

Table 6-2 shows results of toxicity tests of 1,2-dichloroethene for algae.

Test organisms include Selenastrum and Scenedesmus species in fresh water, and the

results show how 1,2-dichloroethene tends to inhibit their growth. Each test was conducted in a closed system by taking into consideration volatility of 1,2-dichloroethene. It is shown that 72- to 96-hour EC_{50} values (to inhibit growth) range from 129 to 294 mg/L. Reported values of NOEC (no-observed-effect-concentration) for Selenastrum, as an index of chronic toxicity in accordance with the OECD test guideline, include 65.6 mg/L (for biomass) and 111 mg/L (for growth rate). (Environment Agency, 1996) There are no reliable reports on algae in seawater.

Species	Test method	Temperature (°C)	Endpoint		Concentration (mg/L)	Reference
Species in fresh wat	er					
Selenastrum	OECD 201	22.9-23.3		Inhibit	129	Ministry of
capricornutum1)	GLP			growth		Environment,
	stagnant		72-hour EC ₅₀	Biomass		1996
	water		24/48-hour EC ₅₀	Growth	240	
	in a closed			rate		
	system		24/72-hour EC ₅₀	Growth	294	
				rate		
			rate72-hour NOECBiomass		65.6	
			24/48-hour NOEC	Growth	111	
				rate	111	
			24/72-house NOEC	Growth	111	
			value	rate	111	
					(m)2)	
Scenedesmus	stagnant	27	8-day threshold of	Inhibit	710 (n)	Bringmann &
quadriccauda	water		toxicity 3)	growth		Kuhn, 1977
	in a closed					
	system					
Scenedesmus	OECD 201	25±1	72-hour EC ₅₀ value	Inhibit	189 (m)	Freitag et al.,
subspicatus	stagnant			growth		1994
	water					
	in a closed					
	system					
	stagnant	21-25	<96-hour EC ₅₀	Inhibit	166 (m)	Behechti et
	water		value	growth		al., 1995
	in a closed					

Table 6-2: Results of toxicity tests of 1,2-dichloroethene for algae

system			

(m): Measured value

(n): Nominal value

Closed system: The test vessel or tank is covered but has headspace.

- 1) Current scientific name is Pseudokirchneriella subcapitata
- 2) Value measured at the beginning of exposure to 1,2-dichloroethene
- 3) Concentration at which 3% of the volume in a test zone is affected (EC₃)

6.1.3 Toxic impact on invertebrate animals

Table 6-3 shows results of toxicity tests of 1,2-dichloroethene for invertebrate animals.

The reports on acute toxicity of 1,2-dichloroethene for Daphnia magna (water flea) in fresh water, as shown below, can all be considered reliable, judging from the test method of using stagnant or semi-stagnant water in a closed system by taking into consideration the substance's tendency of volatility, or the method of determining the level of toxicity through measuring the concentration of test substances. Toxicity values (in terms of 48-hour LC_{50}/EC_{50}) range from 99.4 to 270 mg/L.

Results showing chronic toxicity for reproductive functions under the OECD test guidelines include a 21-day NOEC of 1.02 mg/L (Environment Agency, 1996) and 28-day NOEC of 11 mg/L (Richter et al., 1983).

Marine species tested include Crustacea such as Elminuis modestus (a kind of barnacle) and Artemia salina (brine shrimp). Acute toxicity values identified for the latter, in terms of its impact on inhibiting swimming capability, include 36.4 mg/L (Foster and Tullis, 1985).

Species	Growth stage	Test method	Temperature (°C)	Hardness (mg CaCO3/L)	pН	Endpoint	Concentration (mg/L)	Reference	;
(Crustacea,	Within the first 24 hours after	stagnant water in a closed system	22±1	72	6.7- 8.1	24-hour LC ₅₀ 48-hour LC ₅₀	250 220 (n)	LeBlanc, 1980	
water flea) birth	ASTM ¹⁾ stagnant water in a closed system	20±1	43.5-47.5	7.0- 7.7	48-hour LC ₅₀ 48-hour EC ₅₀ Inhibit swimming capability	270 160 (m)	Richter et al., 1983		
		semi- stagnant water airtight condition	20±1	43.5-47.5	6.6- 7.9	28-day NOEC 28-day LOEC reproductive function	11 21 (m)		
		OECD 202	ND	ND	ND	24-hour EC_{50} Inhibit swimming capability	10 (m)	Freitag et al., 1994	
		OECD	19.7-	35.5	7.7-	24-hour EC_{50}	185	Ministry	0

Table 6-3: Results of toxicity tests of 1,2-dichloroethene for invertebrate animals

of

	202 GLP	20.0		7.8	48-hour EC_{50} Inhibit swimming capability	99.4 (m)	Environment, 1996
	OECD 202 GLP	19.6- 20.3	35.5	7.1- 7.9	21-day NOEC 21-day LOEC reproductive function	1.02 2.56 (a, n)	
Species in seawater							
<i>Elminuis</i> Larvae <i>modestus</i> (a kind of barnacle)	stagnant water in a closed system	ND	ND	ND	48-hour LC ₅₀	186 (n)	Pearson & McConnell, 1975
Artemia 30 hours salina incubatio (Crustacea,	U	19	salt content 3.2%	ND	24-hour EC ₅₀ Inhibit swimming capability	93.6	Foster & Tullis, 1985
brine shrimp)	stagnant water in a closed system	19	salt content 25% 50%	ND	24-hour EC ₅₀ Inhibit swimming capability	36.7 79.7	Foster & Tullis, 1985

ND: no data

(a, n): Nominal value is shown in the table, since measured concentration of the test substance is within $\pm 20\%$ of nominal value.

(m): Measured value

(n): Nominal value

Closed system: The test vessel or tank is covered but has headspace.

Airtight condition: The test vessel is filled to the brim with no headspace left

1) Test guidelines of American Society for Testing and Materials

6.1.4 Toxic impact on fish

Table 6-4 shows results of toxicity tests of 1,2-dichloroethene for fish.

We got reliable data on acute toxicity of 1,2-dichloroethene for fathead minnows (Pimephales promelas), Japanese killifish (Oryzias latipes), guppies (Poecilia reticulate), bluegills (Lepomis macrochirus), rainbow trout (Oncorhynchus mykiss) and largemouth bass (Micropterus salmoides). Tests on those fish were conducted either in a way to create an environment of running water or stagnant water/semi-stagnant water in a closed system by taking into consideration the substance's tendency to volatilize, or in a way to measure the concentration of test substances to determine the level of toxicity. Reported LC₅₀ values range from 66.0 to 136 mg/L. The lowest value of 66.0 mg/L, which is a 96-hour LC₅₀ value, was detected from largemouth bass through the method of measuring the average concentration of the substance in the test water. (Industrial Bio-Test Laboratories, Inc., 1971)

Reported chronic toxicity values include 59 mg/L of LOEC and 29 mg/L of NOEC for fathead minnows, as measured in terms of impact on their incubation rate, survival rate and growth

during the early living stage of 32 days covering the time of fertilization and the fry period (Benoit et al., 1982), a LC₅₀ value of 34 mg/L for rainbow trout, as measured during the 27-day period starting from fertilization until the fourth day after incubation (Black et al., 1982), and a LC₅₀ value of < 56 mg/L for silver salmon, as measured during the 21-day period starting from fertilization (Reid et al., 1982).

Marine species tested include marbled flounders (Limanda limanda). For this fish, an acute toxicity value of 115 mg/L has been reported as the 96-hour LC_{50} value (Pearson and McConnell, 1975).

			und of toxicity	10515 01 1,2 diei	norocui				
Species	Growth stage	Test method	Temperature (°C)	Hardness (mg CaCO3/L)	рН	Endpoint	Concentration (mg/L)	Reference	
Species in fresh wate <i>Pimephales</i> <i>promelas</i> (Fathead minnow)	er Eggs of two to eight hours old	Running water	25±1	45	7.4	32-day NOEC 32-day LOEC Incubation, survival and growth	29 59 (m)	Benoit et al., 1982	
	25 to 30 days old	Running water	25 ± 1	45.5	7.5	96-hour LC ₅₀	118 (m)	Veith et al., 1983	
	30 to 35 days old	U.S. EPA Running water	25±2	45.0-45.5	6.7-7. 6	96-hour LC ₅₀	116 (m)	Walbridge et al., 1983	
	31 days old	Running water	25	44.8	7.4	96-hour LC ₅₀	136 (m)	Geiger et al.,1985	
<i>Oryzias latipes</i> (Japanese killifish)	1.81 cm 0.0907 g	OECD 203 GLP Semi- stagnant water under airtight condition	23.3-23.9	35.5	7.1-7. 8	96-hour LC ₅₀	>126 (m)		
Lepomis macrochirus (Bluegill)	35-75 mm	Stagnant water	18	ND	7	96-hour LC ₅₀	94.0 (m)	Industrial Bio-Test Laboratories, Inc., 1971	
Poecilia reticulata (Guppy)	Two to three months old	Semi- stagnant water in a closed system supportive agent	22±1	25	ND	7-day LC ₅₀	106 (n)	Konemann, 1981	
Oncorhynchus mykiss (Rainbow trout)	Eggs within 30 minutes after fertilization	Running water in a closed system	13.1±0.1	93.9±0.4	7.8± 0.01	23-day LC_{50} (on the day of incubation) 27-day $LC50$ (on the 4th day after incubation)	34 34 (m)	Black et al., 1982	
Micropterus salmoides (Largemouth bass)	35-75 mm	Stagnant water	13	ND	7	96-hour LC ₅₀	66.0 (m)	Industrial Bio-Test Laboratories, Inc., 1971	
<i>Oncorhynchus</i> <i>kisutch</i> (Silver salmon) Species in seawater	Eggs having eyes	Semi- stagnant water	3.0±0.5	ND	5.3-5. 8	21-day LC50	<56 (m)	Reid et al., 1982	
Limanda	15-20 cm	Running	ND	ND	ND	96-hour LC ₅₀	115	Pearson &	

Table 6-4: Results of toxicity tests of 1,2-dichloroethene for fish

water

(n)

ND: no data

(a, n): Nominal value is shown in the table, since measured concentration of the test substance is within $\pm 20\%$ of nominal value.

(m): Measured value

(n): Nominal value

Closed system: The test vessel or tank is covered but has headspace.

Airtight condition: The test vessel is filled to the brim with no headspace left

1) Organic solvent

6.1.5 Toxic impact on other aquatic living creatures

Table 6-5 shows results of toxicity tests of 1,2-dichloroethene for amphibians.

The tests were conducted on embryos of salamanders (Ambystoma gracile) and frogs (Rana pipiens) taken within 30 minutes after fertilization, to detect their incubation rate and survival rate when exposed to 1,2-dichloroethene for the period of 9 and 9.5 days respectively. The test results show that the LC₅₀ value is 2.54 mg/L when exposed for 9.5 days and 4.40 mg/L when exposed for 9 days (on the fourth day after incubation). (Black et al., 1982)

Table 6-5: Results of toxicity tests of 1,2-dichloroethene for amphibian animals

Species	Growth stage	Test method	Temperature (°C)	Hardness (mg CaCO3/L)	рН	Endpoint	Concentration (mg/L)	Reference
Species in fresh wat	er							
<i>Pimephales</i> <i>promelas</i> (Fathead minnow)	Eggs within 30 minutes after fertilization	Running water in a closed	20.2 ± 0.5	98.2±1.1	$8.4\pm$ 0.03	5.5-day LC50 (on the day of incubation)	6.53	Black et al., 1982
(runeut miniow)		system				9.5-day LC50 (on the fourth day after incubation)	2.54 (m)	
	Eggs within 30 minutes after fertilization	Running water in a closed	20.2 ± 0.5	98.2±1.1	$\begin{array}{c} 8.4 \pm \\ 0.03 \end{array}$	5.5-day LC50 (on the day of incubation)	4.52	
		system				9.5-day LC50	4.40	
						(on the fourth day after incubation)	(m)	

(m): Measured value

Closed system: The test vessel or tank is covered but has a headspace.

6.2 Impact on terrestrial living creatures

6.2.1 Toxic impact on microorganisms

As far as we know, there are no test reports available on the toxic impact of

1,2-dichloroethene on microorganisms (bacteria or germs in soil).

6.2.2 Toxic impact on plants

We've found several test reports on toxic impact of 1,2-dichloroethene on plants.

They include a 24-hour LC_{50} value of 3×10^3 mg/kg for barley (Ehrenberg et al., 1974) and a 2-hour EC_{50} value of 17.1 mg/L (concentration at which 50% are affected) in terms of impact on germination for tobacco pollen.

6.2.3 Toxic impact on animals

It has been reported that a test on the toxic impact of 1,2-dichloroethene on striped earthworms was conducted by exposing this organism to a 1,2-dichloroethene-stained filter paper, and the resulting 48-hour LC₅₀ value was 60 μ g/c m².

6.3 Impact on living creatures in the environment (summary)

There is a relatively large number of test reports available on the impact of 1,2-dichloroethene on living creatures in the environment, and those results show the substance's toxicity in terms of lethal impact, swimming capability-inhibiting impact, growth-inhibiting impact, reproductive function-inhibiting impact, etc.

Since 1,2-dichloroethene is highly volatile, toxicity tests should be conducted either in a way to create an environment of running water or stagnant water/semi-stagnant water in a closed system by taking into consideration the substance's tendency to volatilize, or in a way to measure the concentration of test substances to determine the level of toxicity.

As for impact on microorganisms, we obtained reports on bacteria and protozoa. For the former, the lowest value reported was a 48-hour EC_{50} value of 25mg/L to inhibit generation of anaerobic gas for Methanogen. For the latter, a 20-hour threshold of toxicity of 1,050mg/L to inhibit reproductive function (EC₅) has been reported for Uronema parduczi.

As for the impact on algae, we obtained reports on 72- to 96-hour EC_{50} values to inhibit growth of Selenastrum and Scenedesmus respectively. The reported values range from 129 to 294 mg/L, which means that 1,2-dichloroethene can be considered as having no acute toxicity to those algae (under the GHS categorization). Reported values of NOEC (no-observed-effect-concentration) for Selenastrum, as an index of chronic toxicity in accordance with the OECD test guideline, include 65.6 mg/L (for biomass) and 111 mg/L (for growth rate).

Reported results of acute toxicity test of 1,2-dichloroethene for invertebrate animals range from 36.4 to 270 mg/L. From the results, it has been found that the substance exhibits acute toxicity to brine shrimp of Crustacea (to the degree of level III under the GHS categorization). Reported NOEC values, as an index of chronic toxicity for reproductive function, range from 1.02 to 11 mg/L for Daphnia magna (water flea).

As for acute toxicity for fish, reported values range from 66.0 to 136 mg/L, of which the lowest value is a 96-hour LC_{50} value of 66.0 mg/L for largemouth bass. This value falls under level III acute toxicity under the GHS categorization. Reported chronic toxicity values, in terms of NOEC and LC_{50} as an index of lethal impact or growth-inhibiting impact, range from 29 to 56 mg/L for fathead minnows, rainbow trout and silver salmon.

We also obtained reports on amphibians. Reported LC_{50} values for embryos of northwestern salamanders and leopard frogs taken within 30 minutes after fertilization range from 2.54 to 4.40 mg/L.

When comparing marine living creatures with those in fresh water, it can be assumed that crustaceans living in seawater are slightly more susceptible to 1,2-dichloroethene than their counterparts in fresh water, or that susceptibility is almost the same. As for the comparison between seawater and fresh water, we were unable to obtain sufficient data on fish and no data was available on algae

Reported data on terrestrial living creatures include a 24-hour LC₅₀ value of 3×10^3 mg/kg for barley and a 2-hour EC₅₀ value of 17.1 mg/L to inhibit germination for tobacco in the category of plants, as well as a 48-hour LC₅₀ value of 60μ g/c m² for striped earthworms as measured by exposing this organism to a 1,2-dichloroethene-stained filter paper.

The above-mentioned reports show that acute toxicity of 1,2-dichloroethene to aquatic living creatures has been detected for some crustaceans and fish, registering level-III values under GHS categorization.

Among reported toxicity values, the lowest one for aquatic living creatures is a 21-day NOEC of 1.02 mg/L to inhibit reproductive function of a crustacean, Daphnia magna.

7. Human health effects

7.1 In vivo fate

Table 7-1 shows the test results for the in vivo fate of 1,2-dichloroethane.

7.1.1 Absorption

1,2-dichloroethane is quickly absorbed by humans and test animals by all routes of administration; oral, inhalation, or skin.

Rats given 150 mg/kg orally reached their maximum blood concentration of 30-44 μ g/mL in 15 minutes (Reitz, et al., 1982). In a test of rats given 25-150 mg/kg orally, blood concentration in rats given more than 50 mg/kg was not linearly correlated with the administered dose, indicating saturation in gastrointestinal absorption (Spreafico et al., 1980).

Two reports were submitted in relation to human inhalation exposure to 1,2-dichloroethane: a person inhaling 1,2-dichloroethane for 30 minutes died after 20 hours (U.S. DHHS, 1999); 1,2-dichloroethane accumulated in the breast milk (2.8 mg/100 mL) of a woman occupationally inhaling and dermally absorbing the substance (15.6 ppm) (U.S. DHHS, 1999). Rats inhaling 1,2-dichloroethane reached their maximum blood concentration in 1-2, or 2-3 hours (Reitz et al., 1980, 1982; Spreafico et al., 1980). The peak blood concentration in rats given 150 ppm of 1,2-dichloroethane for six hours was 8-10 µg/mL (Reitz et al., 1980, 1982).

In a closed epicutaneous test, the rate of dermal absorption of 1,2-dichloroethane by mice was 479.3 nmol/min/cm². From this figure, the amount of dermal absorption by humans whose hands were immersed in 1,2-dichloroethane was calculated to be 36.6 mg/min.

7.1.2 Distribution

The analysis on the distribution of 1,2-dichloroethane to each tissue shows that absorbed 1,2-dichloroethane accumulates in fat tissues through both oral and inhalation exposure.

In the test of rats given 1,2-dichloroethane orally, the concentration of the substance in liver peaked the fastest among all organs (in 10 minutes after exposure). The concentration of 1,2-dichloroethane peaked in fat tissues in 45-60 minutes, and the peak concentration was about five times as high in fat as in blood (Spreafico et al., 1980). Concentrations of 1,2-dichloroethane in each organ were 20-30 times as high in rats inhaling 250 ppm as those inhaling 50 ppm. The accumulation of 1,2-dichloroethane was 8-9 times as large in fat tissues as in blood (Spreafico et al., 1980).

In the test of pregnant rats exposed to 153-1,999 ppm for five hours, the concentration of 1,2-dichloroethane in maternal blood and in fetuses of rats increased linearly with increasing exposure levels, indicating transplacental distribution of 1,2-dichloroethane. The concentration of 1,2-dichloroethane was 0.316 times as high in fetuses as in maternal blood (Withey and Karpinski, 1985).

Withey and Colins (1980) reported that the distribution of 1,2-dichloroethane after intravenous injection coincided well with 2- or 3- compartment models. D'Souza (1987) also reported that the actual measurement of blood concentration in rats and mice coincided well with the value calculated from the PB-PK model developed by the 3- compartment model.

*1. PB-PK model: Abbreviation of the Physiologically Based Pharmacokinetic Model that enables incorporation of physiological and anatomical data on humans and animals.

7.1.3 Metabolism and excretion

Fig. 7-1 shows the pathways of metabolism of 1,2-dichloroethane (U.S. DHHS, 1999).

In the test of rats given 150 mg/kg of radiolabeled 1,2-dichloroethane orally, thiodiacetic acid and sulfate conjugates appeared in the urine. 85.7% of the radioactivity was excreted in the urine, and 7.7% as carbon dioxide in the exhaled air. (Reitz et al., 1980, 1982). In relation to oral administration, another report shows that S-carboxymethyl cysteine, thiodiacetic acid, and chloroacetic acid were detected in both mice dosed 37.5 or 150 mg/kg and rats dosed 25 or 100 mg/kg. In mice, 18.21% of the radioactivity was excreted as carbon dioxide in the exhaled air, and in rats, 8.20%. (Mitoma et al., 1985). In addition, there is a report saying that glycolic acid sulfide and thioether were detected. In this test, the urinary excretion of radioactivity was 62.1% for lower doses but 7.4% for higher doses, which suggests saturated metabolism or gastrointestinal absorption (Payan et al., 1993).

Metabolites formed through inhalation exposure are similar to those through oral administration. In the test of animals exposed to 150 ppm for six hours, thiodiacetic acid and sulfate conjugates appeared in the urine. The percentages of each metabolite to the total in inhalation exposure are the same as those in oral administration. 84% of the radioactivity was excreted in the urine, and 7% as carbon dioxide in the exhaled air. (Reitz et al., 1980; 1982). In another test of rats exposed to 50 ppm, glycolic acid sulfide, sulfate conjugates, and chloroacetic acid were detected (Cheever et al., 1990).

As for intraperitoneal injection, in the test of mice given a single shot of 50-170 mg/kg radiolabeled 1,2-dichloroethane, the remaining radioactivity was excreted as chloroacetic acid, S-carboxymethyl cysteine/sulfate conjugates, thiodiacetic acid, 2- chloroethanol, and S,S' ethylene-bis-cysteine in the urine, and as carbon dioxide in exhaled air. 51-73% of the radioactivity was excreted in the urine, and 4-12% as carbon dioxide in the exhaled air (Yllner, 1971).

A study shows that the glutathione conjugate of 1,2-dichloroethane binding to DNA may cause mutagenic and carcinogenic damage, and another study indicates that 1,2-dichloroethane is bound to DNA in rats given radiolabeled 1,2-dichloroethane by oral administration and inhalation exposure (Cheever et al., 1990; Reitz, 1980, 1982). The measurement of SH concentration in liver after oral administration and inhalation exposure shows the consumption of glutathione by 1,2-dichloroethane (Reitz et al., 1982).

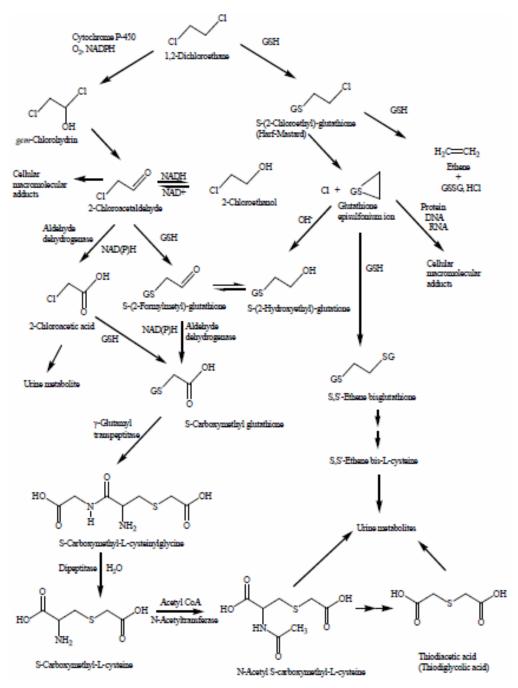


Fig. 7-1 Metabolism of 1,2-dichloroethane (Cited from U.S. DHHS, 1999).

 Table 7-1
 Test results for the in vivo fate of 1,2-dichloroethane

Animal species	Administration method	Quantity		Results	Reference
Human (nurse, age unknown)	Inhalation Skin	15.6 ppm	1,2-dichloroethane (2.8 breast-feeding mother.	mg/100mL) was detected from the breast milk of a	US DHHS, 1999
Rat (SD, male, 14 months of age)	Single intravenous injection	1, 5, or 25 mg/kg	The 1, 5, or 25 mg/kg detectable for 30 minutes period, the remaining 1 disappearance declined existence of a saturation p $\overline{T^{1/2} (min)}$ $\frac{1}{1} mg/kg$ $\frac{5}{25}$ AUC (µg min/mL) $\frac{1}{1} mg/kg$ $\frac{5}{25}$	2-dichloroethane in the blood was fast and biphasic. of 1,2-dichloroethane injected into the blood was s, 60 minutes, and 2 hours, respectively. After this ,2-dichloroethane was undetectable. The speed of linearly with increasing dosage, suggesting the rocess in excretion. <u>Blood</u> 7.30 9.49 14.07 9 54 595 beginning 1.50 8.0 38.12	1

RatOral(SD, male, 14Singlemonths of age)Repe

Oral Single dose: 25, 14 Single dose 50, or 150 mg/kg Repeated doses Repeated doses: 50 (5 days/week x 2 mg/kg/day) weeks) The concentration of 1,2-dichloroethane in liver reached a peak level in 10 Spread minutes, the fastest among all organs. The disappearance is biphasic. 1980 1,2-dichloroethane kinetics in the lungs were the same as in blood. However, the concentration of 1,2-dichloroethane in the lungs was lower than in blood. The concentration of the substance in fat tissues reached a peak in 45-60 minutes, later than in other organs. On the contrary its concentration level was higher. When 50 or 150 mg/kg was given to rats, the concentration level was about five times as high in fat as in blood. The disappearance of 1,2-dichloroethane from fat is monophasic. The accumulation of the substance in fat was saturated. The blood concentration in rats given more than 50mg/kg was not correlated with increasing dosage, indicating saturation in gastrointestinal absorption. The concentration of 1,2-dichloroethane in rats given 50 mg/kg did not differ between a single dose and repeated doses for 10 days, as well as between males and females.

	Bloo d	Fat	Lung	Liver
$T^{1/2}$ (min)				
25 mg/kg	24.62	23.22	24.10	18.47
50	44.07	30.11	38.26	42.31
150	56.70	57.63	44.57	66.47
AUC (µg min/m	nL)			
25 mg/kg	446	5119	136	679
50	1700	1254 3	538	1897
150	7297	2946 8	648	5384
Maximum conce	entration	$(\mu g/mL)$	or g)	
25 mg/kg	13.29	110.6 7	2.92	30.02
50	31.94	148.9 2	7.20	55.00
150	66.78	259.8 8	8.31	92.10

Spreafico et al.,

Rat Single inhalation 50 or 250 ppm (SD, male, 14 for 5 hours months of age)

The concentration of 1,2-dichloroethane peaked in 2-3 hours. Concentrations Spreafico et al., in each tissue were 20-30 times as high in rats exposed to 250 ppm as in those exposed to 50 ppm. The accumulation of 1,2-dichloroethane was 8-9 times as high in fat as in blood. The disappearance was fast in the lungs but slow in fat. The rate of disappearance depends on dosage. No saturation was observed.

Reitz et al.,

		Bloo d	Fat	Lung	Liver
	$T^{1/2}$ (min)				
	50 ppm	12.69	22.63	11.26	10.72
	250	22.13	28.12	15.53	17.51
	AUC (µg min/	mL)			
	50 ppm	26	391	6	17
	250	1023	1355 8	279	694
	Concentration	at the be	ginning	(µg/mL	
	or g)				
	50 ppm	1.42	10.24	0.39	1.02
	250	30.92	265.4 7	13.88	22.06
) ppm	Changes in the c	oncentrat	ion of 1,2	2-dichlor	oethane
	The blood c	oncentrati	on peak	ed 1-2	hours af

RatSingleinhalation150 ppr(Osborne-Mendel,
male,
unknown)for 6 hoursfor 6 hours

The blood concentration of 1,2-dictionorbetnate in blood rhe blood concentration peaked 1-2 hours after the commencement of exposure, and reached a plateau 2 hours later at 8 μ g/mL. After exposure, the concentration level fell sharply. The disappearance was biphasic.

Half-life period: First phase (6 minutes) Second phase (35 minutes) AUC: 3,018 (µg min/mL)

Rat	Single oral gavage	Oral: 150 mg/kg	In the 48-hour observation of
(Osborne-Mendel,			are the maximum in the previo
male)	Single inhalation	Inhalation:	radioactivity, the amount of u
	-	150 ppm	exhaled air, and the amount of m
	Radiolabeled		than in those exposed through
	$[1,2^{-14}C]$ was		differences between the two rou
	· · · · · ·		

administered.

of rats given 150 mg/kg or 150 ppm (both values Reitz et al., ious carcinogenicity tests), the total amount of 1980 unchanged 1,2-dichloroethane excreted in the metabolites were larger in rats given doses orally inhalation. On the other hand, there were no outes in terms of the distribution of radioactivity, routes of excretion, and type of metabolites.

The distribution of radioactivity was examined for organs that developed tumors in an oral carcinogenicity test and those that did not, and no differences of distribution were found among these organs.

In the past, Maltoni et al. conducted a carcinogenicity test by inhalation exposure, and the NCI also conducted a test by oral administration. Tumors did not develop in the former, but developed in the latter (See Table 7-8). This time the test was conducted to clarify the difference of the results between the previous two studies. However, the test results show that there were no differences in the toxicokinetics of 1,2-dichloroethane between oral and inhalation exposure, and the difference of test results in the previous two studies was not clarified. In addition, there were no remarkable differences in the macromolecular binding of radioactivity^{a)} between oral and inhalation exposure.

Distribution of radioactivity 48 hours later

	() mol	Oral (µ mol/kg) %		lation (μ l/kg) %
Collected radiolabeled EDC	1539	-	512	-
Unchanged EDC in exhaled air	447	-	9.4	-
Metabolites	(1092)	(100)	(503)	(100)
Urine	926	85.7	432	84.4
CO2	83.1	7.7	36.1	7.0
Carcass ^{b)}	46.9	4.3	22.7	4.4
Feces	23.6	2.1	8.90	1.7
Cage	12.5	1.1	3.34	0.7

Distribution to prgans 48 hours later (nmol/g tissue)

	230			U
		Oral	Inhalation	
Liver		154	75	_
Kidney		120	77	
Lung		51	35	

Rat	Single oral gavage	Oral: 150 mg/kg Macromolecular binding (nmol/g tissue)			Reitz	et	al.,		
(Osborne-Mendel,				Oral	Inhalation		1980		
male, age	Single inhalation	Inhalation:	Liver	175	268				
unknown)	D 1' 1 1 1 1	150 ppm	Kidney	183	263				
	Radiolabeled		Lung	65	130				
	[1,2- ¹⁴ C] was administered.		Spleen	106	147				
			Anterior	160	71				
			stomach						
			Stomach	90	156				
Rat (Osborne-Mendel,	Comparison between a single	Oral: 150 mg/kg	* Changes in blo Inhalation: The			roethane from blood was biphasic.	Reitz 1982	et	al.,

Rat	Comparison	Oral: 150 mg/kg	* Macromolecular binding	Reitz	et	al.,
(Osborne-Mendel,	between a single		There was no particular difference between oral and inhalation (Reitz, R.H.,	1982		
male, age	oral gavage and a	Inhalation:	et al., 1980).			
unknown)	single 6-hour	150 ppm				
	inhalation		* DNA alkylation and mutagenicity in relation to bacteria			
			If salmonella typhimurium TA1535 is incubated with 1,2-dichloroethane,			

alkylation will be linearly correlated with increasing reversion colonies.

Cytosol concentration	2.2	7.8	27	71
_(%)				
DNA alkylation	8.6	27	107	137
(dpm/mg DNA)	5			
Reversion colonies	4.6	23.	80.2	111
(revertants/108 cells)		5		

* DNA alkylation in rats

DNA alkylation was 3-5 times as high in oral administration as in inhalation exposure. DNA alkylation in spleen is one-third of that in other organs. No abnormal circumstances were observed in an autopsy, as well as biochemical and histopathological tests.

DNA alkylation in rats [(μ mol/mol) DNA of bound EDC]

	Oral	Inhalation
Experiment -1		
Liver	21.3	8.2
Spleen	5.8	1.8
Kidney	17.4	5.2
Stomach	14.9	2.8
Experiment -2		
Liver	13.9	3.3
Spleen	2.5	1.8
Kidney	14.5	2.0
Stomach	6.7	1.9

Rat	Comparison	Oral: 150 mg/kg	Glutathione depletion	Reitz	et	al.,
(Osborne-Mendel,	between a single		Samples of the liver were taken from the body 4 hours after oral	1982		
male, age	oral gavage and a	Inhalation:	administration and 6 hours after inhalation exposure, and the non-protein SH			
unknown)	single 6-hour	150 ppm	concentration in the liver was measured and converted to glutathione.			
	inhalation		Concentrations in both routes of entry were considerably lower than those in			
			the control group.			
			Glutathione depletion			

	Control group	Ora	Inhalation
	(No	1	
	treatment)		
SH concentration	1.35	0.3	0.31
mg/g		5	
(Converted to			
glutathione)			

Mouse (ICR, male, age unknown)	Skin contact Closed epicutaneous test 15 minutes 2.92 cm ²	0.5 mL	Out of 2,078 μ g, the total amount absorbed exhaled air during exposure. The skin absorp cm ² . The skin absorption rates of 1,2-dichl chlorinated solvents were almost linearly prop On the basis of these results, the amount o humans whose hands are immersed in th calculated to be 36.6 mg, which is equivale 1-minute inhalation of 3,615 ppm.	oroethane and 7 other types of ortional to aqueous solubility. f 1,2-dichloroethane absorbed by e substance for one minute is	5
			Test results in mice Remaining DCE in body (µg) Expiratory excretion (µg) Total skin absorption (µg) Skin absorption rate (nmol/min/ cm ²⁾	2,002 76.0 2,078 479.3	
			Forecasted results in humans* Remaining DCE in body after 1-minute exposure (mg) 1-minute inhalation exposure level that is equivalent to the value above (ppm)	36.6 3,615	
			Calculation formula Surface area of both hands Respiratory volume Retention rate of inhaled 1,2-dichloroethane	800 cm ² 5 L/min 50 %	
			Remaining DCE in body after 1-minute expo DCE in body per 1 cm ² of applied area / 15 min = $800 \text{ cm}^2 \text{ x } 2002 \mu \text{g x } 1/2.92 \text{ cm}^2 \text{ x } 1/15 \text{ min x}$ = 36.6 mg/min	nutes	
			1-minute inhalation exposure level that is equi = Remaining DCE after 1-minute skin contact rate) x ppm conversion = 36.6 mg.min / (5L/min x 0.5 x 98.97/24.45 x = 3,615 ppm	/ (Expiratory volume x Retention	

Rat (SD, pregnant female, age unknown)	5-hour inhalation 17th day of pregnancy	153, 305, 552, 1,039, 1,509, or 1,999 ppm	maternal blood and were measured. The and in fetuses in concentration of the blood. The concentration concentration of 1,2 cervix. Fetal weigh	l in fetuses e concentra ncreased l: e substance on in fetuse 2-dichloroet t was low : eight was	(whole bo tion of 1,2- inearly wi was 0.316 es depends thane was h in both end	ncentration of 1,2-dich ody) of rats and the wei- dichloroethane in both r ith increasing exposur times as high in fetuses on their location in the higher in the ovaries that is of the uterus, but high related with the con	ight of fetuses maternal blood e level. The as in maternal he uterus. The in the uterine h in the center	Withey Karpinski, 1985	&
Rat (Wistar, male, age unknown)	Single oral gavage	100mg/kg (Solvent: water or corn oil)	The blood conce the blood 300 min water, and the max for water. However level.	entration of utes after g timum cond c, corn oil ta	gavage. Al centration l akes longer	broethane was measured JC was smaller for cor level was also lower for r to reach the maximum	n oil than for corn oil than concentration	Withey et 1983	al.,
			Comparison of AU min/mL)	C between	water and	corn oil (300 minutes a	fter dose) (µg		
				Corn oil	Water	Ratio			
			AUC (μg min/mL)	1242	4825	3.88			
			Comparison of the between water and		ate, maximu	um blood concentration,	and peak time		

	Corn oil	Water
	0.0156	0.0201
concentration	15.9	84.6
	10.6	3.2
	concentration	0.0156 concentration 15.9

Rat Single intravenous 3, 6, 9, 12, or 15 (Wistar, male, age injection mg/kg unknown)

In order to measure the blood concentration of 1,2-dichloroethane, blood Withey & samples were collected from 2 minutes after injection to the time when Colins, 1980 1,2-dichloroethane became undetectable. The distribution of 1,2-dichloroethane fits a 2-compartment model for 3 and 6 mg/kg, and a 3-compartment model for

9, 12, and 15 mg/kg.

	2-compartment model				
Ln C	t = Ln (A	$e^{-\alpha t} + B$	$e^{-\beta t}$		
	rtment m				
Ln C	t = Ln (A	$e^{-\alpha t} + B$	$e^{-\beta t} + Ce^{-\beta t}$	-γt)	
(mg/kg)	3.0	6.0	9.0	12.0	15.0
Vd (mL)	42.40	44.06	78.64	59.71	65.43
Α	22.60	50.67	39.87	61.82	71.23
(µg/mL)					
α	0.22	0.15	0.16	0.21	0.26
(\min^{-1})					
B	3.72	3.31	11.14	15.23	24.79
$(\mu g/mL)$					
β	0.048	0.029	0.019	0.039	0.048
(\min^{-1})					
Č	-	-	1.412	1.425	2.518
$(\mu g/mL)$					
γ	-	-	0.011	0.010	0.012
(\min^{-1})			2	6	3
()					

Rat Single intravenous 15 mg/kg (Wistar, male, age injection unknown)

Samples were collected from heart, liver, lung, spleen, kidney, brain, and perinephric fat tissues during 5-300 minutes after injection. Additional samples were collected only from perinephric fat tissues during 24-30 hours after injection (This is because 1,2-dichloroethane became undetectable in the other organs). The absorption and excretion of 1,2-dichloroethane in organs were similar to those in blood. However, perinephric fat tissues took longer than the blood to absorb and excrete the substance.

&

Organs	α	β	А	В
	(\min^{-1})	(\min^{-1})	$(\mu g/mL)$	$(\mu g/mL)$
Blood	0.4132	0.0242	58.0	24.2
Heart	0.0323	-	6.72	-
Lung	0.0226	-	4.20	-
Liver	0.0399	-	9.38	-
Spleen	0.0514	-	6.00	-
Kidney	0.0253	-	7.70	-
Brain	0.0378	-	9.20	-
Fat	-	0.0088	36.9	-
tissue				

The blood concentration of 1,2-dichloroethane declined remarkably after Jakobson et al., increasing for 30 minutes. However, it took an upturn again after an hour and continued to increase until the end of exposure. The graph of changes in the excretion rate is not curved, and it is presumed that an upper compartment of a 2 compartment model fits.

Blood concentration

Number of	Number of	30 minutes	6 hours
applied	guinea pigs	after	after
 areas		excretion	excretion
1	4	1.4	3.8
2	4	4.9	7.1

Guinea pigSki(male and female,
age unknown)hou
Close

Skin contact for 12 1.0mL e, hours Closed epicutaneous test

 (3.1 cm^2)

Development of a PB-PK model

A PB-PK model was developed for the metabolism of 1,2-dichloroethane 1987 under the following requirements:

1. Metabolism is conducted in the lungs and liver.

2. There are three compartments: Richly Perfused Tissues, Slowly Perfused Tissues, and Fat.

3. Metabolism must occur by P-450-mediated oxidation (Saturation will occur) and glutathione conjugation (High doses will cause GSH depletion).

As a result, the actual measurement of blood concentration in rats and mice coincided well with the PB-PK model-based GHS concentrations in the liver and lungs.

Values used for calculation

Distribution	SD	F344	B6C3F	Human
coefficient ratio			1	
Blood: air	27.	30.4	29.7	21.1
	6			
Richly perfused:	1.1	1.2	1.0	-
blood				
Slowly perfused:	0.8	0.8	0.8	-
blood				
Fat: blood	12.	11.4	12.1	-
	2			

Rate constants, etc.

DCE Vmax = 3.25 mg/h/kg, Km = 0.25 mg/L, Kf = 9.0/h kgGSH Kgs = 0.0014/h kg, Hfee = 4,500/h kg, Kgsm = 0.14/h kg

Extrapolation of data from rodents to humans

When the production level of glutathione conjugates against the administered dosage is plotted based on the PB-PK model, the production level in liver appears the same among mice, rats, and humans. However, the production level in the lungs was two and half times as high in mice as in humans. Therefore it is presumed that the lung cancer rate is 1/2.5 times as high for humans as for mice. Therefore, the coefficient "12.7" generally used in accordance with the ratio of body surface was not appropriate for this case.

Production level of glutathione conjugates

D'Souza et al.,

In relation to the previous carcinogenicity tests on the inhalation or oral 1987 administration of 1,2-dichloroethane, calculations were made for the production level of glutathione conjugates in both the liver and lungs. Previous reports show that glutathione conjugates binding to DNA cause genetic toxicity. The production levels of glutathione conjugates in the liver and lungs were lower for 150 ppm inhalation exposure than for 75 mg/kg oral administration. It is presumed that since the production level of glutathione conjugates was lower for inhalation exposure than for oral administration, no carcinogenicity was found in the inhalation exposure test.

Production level of glutathione conjugates (mg/L; calculated value)

Type of dose		Liver	Lungs	
Oral gavage				
150 mg/kg	5	630	131	
75 mg/kg		372	71	
Inhalation ex	posure			
150 ppm (7h)	230	64	
* Radioactivity	y collection r	ate (%)		Mitoma et a
Exhaled air	CO ₂ in	Urine + Feces	Carcass	1985
	exhaled air	+ Liver +		
		Kidney		
7.65	28.21	81.88	2.37	

81.03% of radioactivity was collected in the forms of CO₂ in exhaled air, extracts from urine/faces/liver/kidney, and the carcass, indicating that a large quantity of radioactivity was metabolized.

* Liver protein binding (nmol eq/mg protein)

25	100 mg/kg
0.18	1.07

The liver protein binding of 1,2-dichloroethane was smaller than that of other similar types of chlorinated hydrocarbon compounds.

* S-carboxymethyl cysteine, thiodiacetic acid, and chloroacetic acid were detected as metabolites.

Rat Oral gavage (Osborne-Mendel, male, 4-6 weeks of 1,2-dichloroethane age) weeks)

Non-radiolabeled (5 days/week for 4 +radiolabeled 1.2-dichloroethane

(single dose)

25 or 100 mg/kg

Mouse	Oral gavage Non-radiolabeled 1,2-dichloroethane (5 days/week for 4 weeks) + radiolabeled 1,2-dichloroethane (single dose)	37.5 or 150 mg/kg	* Radioactivity collection rate (%)					Mitoma	et	al.,
(B6C3F ₁ , male, 4-6 weeks of age)			Exhaled air	CO ₂ in exhaled air	Urine + Feces + Liver + Kidneys	Carcass		1985		
			7.65	18.21	81.88	2.37				
			81.03% of radioactivity was collected in the forms of CO ₂ in exhaled air, extracts from urine/faces/liver/kidney, and the carcass, indicating that a large quantity of radioactivity was metabolized.							
			* Liver protein	n binding (nm	ol eq/mg protein)					
						<u>3.75</u> 0.14	150 mg/kg 0.52			
			The liver protein binding of 1,2-dichloroethane was smaller than that of other similar types of chlorinated hydrocarbon compounds.							
Rat (SD, male, age	Single oral gavage	0, 0.12, 0.25, 0.50, 1.01, 2.02, 4.04, or 8.08 mmol/kg	* S-carboxymethyl cysteine, thiodiacetic acid, and chloroacetic acid were detected as metabolites. In this test, ¹⁴ C-labeled 1,2-dichloroethane was given to rats, and their urine samples were collected 24 hours after the doses in order to detect thiodiglycolic acid (TDGA) and thioethers. The percentage of excreted radioactivity to the administered dose decreased linearly with the increase in the administered dose. However, TDGA was stable at 21.8% for rats given up to 1.01mmol/kg. The excretion of TDGA increased in proportion to the administered dose. It is presumed that saturation in metabolism and gastrointestinal absorption mainly caused the declining excretion rate.					Payan 6 1993	et a	al.,
unknown)										
	Urinary excretion of radioactivity (with the administered dose being 100%)									
			Amount o 0.12, 0.25 mi		Excretion rate					
			8.08 mmol/k	0	4 %					
			Urinary excretion of TDGA (with the administered dose being 100%)							
			Amount o 0.12-1.01 mr		Excretion rate					
			0.12-1.01 mr	1101/kg 21	.0 70					

Inhalation + (Disulfiram in the diet) or (Ethanol in the drink)	(Disulfiram 0.5%)
7 hours/day	

5 days/week Radiolabeled 1,2-dichloroethane was given to rats after tests for 2 years were completed. Cheever et al., 1990

The blood concentration of 1,2-dichloroethane was high in the [DCE+DS] and [DCE] groups.

Group	Gender	0.25 hours after	2.25 hours after
		exposure	exposure
DCE	Male	0.28	0.22
DCE+DS	Male	1.46	1.20
DCE+ET	Male	0.36	0.38
DCE	Female	0.26	0.28
DCE+DS	Female	1.54	1.08
DCE+ET	Female	0.30	0.35

Toxicokinetics

Blood concentration

When radiolabeled 1,2-dichloroethane was given to rats through a single oral administration, the amount of the administered dose had an impact on the excretion. In the control group, 47-55% of radioactivity was excreted in the urine, and 28-30% was unchanged and excreted in exhaled air. In the [DCE+DS] group, however, 35-36% of radioactivity was excreted in the urine, and 41-55% was unchanged and excreted in exhaled air.

Male (with the administered dose being 100%)

Group	Urine	Volatile organics	CS 2	Feces	Total
Control	46.6	30.5	0.5	1.8	79.4
DS	35.2	40.5	<0.	1.0	76.7
			1		
ET	45.6	29.8	0.1	2.6	782
DCE	42.5	27.3	0.1	0.9	70.8
DCE+ DS	27.6	57.6	<0.	0.9	86.0
			1		
DCE + ET	51.1	17.7	0.2	1.9	71.0
Female					
Group	Urine	Volatile	CS	Feces	Total
		organics	2		
Control	55.0	28.0	0.7	1.1	84.7
DS	36.4	55.3	<0.	0.2	91.9
	34		1		
ET	41.6	29.8	0.2	2.4	73.9
DCE	33.9	40.3	0.1	0.9	75.3
DCE+ DS	24.9	57.7	<0.	0.2	82.9
			1		

Rats (SD, male/female, 5.5-6 weeks of age)	Inhalation + (Disulfiram in the diet) or (Ethanol in the drink) 7 hours/day 5 days/week Radiolabeled 1,2-dichloroethane was given to rats after tests for 2 years were completed.	 one week bet	bolites ¹⁴ C-labe fore the co CE] group acid were bolites veolic acid III ycolic acid	led 1,2-dic ompletion o s, thiodigh detected as	hloroet of the t ycolic a	hane wa est. For icid, thic	ts given all of the	to rats of each group e [DCE+DS], [DCE + ic acid sulfoxide, and	Cheever et al., 1990
		Group	i	ii	iii	iv	v		
		Control	1.7	26.7	5.0	65.3	0.7		
		DS	2.3	32.7	6.3	57.0	1.7		
		ET	2.3	28.7	4.7	63.0	0.3		
		DCE	2.3	28.7	7.0	60.0	1.7		
		DCE+ DS	1.7	28.0	5.0	60.7	4.0		
		DCE + ET	3.7	31.3	7.3	54.3	2.7		
		Female							
		Group	i	ii	iii	iv	v		
		Control	2.0	23.7	4.7	68.3	1.0		
		DS	1.5	24.0	5.0	65.5	3.5		
		ET	2.0	22.3	6.0	67.3	1.3		
		DCE	3.0	20.0	5.3	69.3	1.7		
		DCE+ DS	1.7	18.0	4.3	71.0	4.3		
		DCE + ET	1.3	28.7	7.0	60.7	1.3		
			150mg/kg	g of ¹⁴ C-lab				were given to the rats	

of each group via oral gavage 10-14 days after the completion of the test. In the control group, covalent binding to DNA in liver was somewhat higher than other groups, but there were no remarkable differences among each group. (μ mole/mol DNA)

Group	Male	Female	Male and
			Female
Control	43.5	36.4	40.0
DS	41.6	29.0	35.3
ET	35 .5	26.9	33.2
DCE	18.9	35.0	28.6
DCE+ DS	35.6	22.5	29.0
DCE + ET	53.3	23.1	38.2

Mouse (gender, type, and age unknown)	Single intraperitoneal injection	50, 100, 140, or 170 mg/kg	In this test, radiolabeled 1,2-dichloroethane was given to mice through an intraperitoneal injection in order to examine the excretion of radioactivity. 51-73% of radioactivity was excreted in the urine, and 4-12% as carbon dioxide in exhaled air. Metabolites identified in this test were chloroacetic acid, S-carboxymethyl cysteine, thiodiacetic acid, 2- chloroethanol, and S,S' ethylene-bis-cysteine. The results of this test were found to be remarkably similar to those obtained from mice dosed with chloroacetic acid. Therefore, it is presumed that the metabolism of 1,2-dichloroethane occurs mainly via chloroacetic acid.	Yllner, 1971
Rat	Incubated with	3mL of	1,2-dichloroethane metabolism to ethylene in hepatic cytosol is independent	Abders &
(SD, age unknown, liver)	hepatic cytosol at 37 °C for 30 minutes.	1,2-dichloroethane , including the following: phosphate buffer (50μ mol); GSH (30μ mol); 1,2-dichloroethan (225μ mol); cytosol (6 mg protein)	of NADPH, but remarkably dependent on the presence of reduced GSH. The metabolism of 1,2-dichloroethane in renal cytosol is about 50% of that in hepatic cytosol, and metabolism in the cytosol of lungs, brain, and muscle cells was less than 10%. Substances reacting with the SH group and GHS S- transferases impeded the metabolism of 1,2-dichloroethane.	Livesey, 1980

a) The macromolecular binding of radioactivity refers to the covalent binding of radiolabeled chemicals or their metabolites with biological macromolecules, such as DNA, RNA, and protein.

b) The carcass refers to the entire body minus all organs.

c) The PB-PK model is an abbreviation of the Physiologically Based Pharmacokinetic Model that enables incorporation of physiological and anatomical data on humans and animals.

7.2 Epidemiological studies and case reports

Table 7-2 shows epidemiological studies and case reports regarding humans exposed to 1,2-dichloroethane.

1,2-dichloroethane causes irritation to human mucosa. The ingestion of large amounts of 1,2-dichloroethane will cause serious acute toxicity, sometimes resulting in death. Exposure to high concentrations of 1,2-dichloroethane will produce the same results. Clinical symptoms will appear within two hours after ingestion. The major symptoms are reported to be headache, dizziness, hyposthenia, nausea, vomit consisting of blood and bile, dilated pupils, epigastralgia, and a feeling of constriction of the chest. Cyanosis is also reported in some cases. In the autopsies of dead samples, lung edema and bleeding and congestion of main organs were reported (Garrison and Leadingham, 1954; Hueper and Smith, 1935; Lochhead & Close, 1951; Martin et al., 1969; Nouchi et al., 1984; Oak ridge National Laboratory, 1979; Prezdziak & Bakula, 1975; Sayers et al., 1930; Schiinborn et al., 1970; Yodaiken and Babcock, 1973.)

From the above data, it is presumed that 1,2-dichloroethane affects the central nervous system and circulatory system via oral or inhalation routes. The lethal oral dose of 1,2-dichloroethane is presumably 15-60mL.

Some reports say that chronic exposure to 1,2-dichloroethane will cause nervous disorder, hepatic or renal dysfunction, irritation to mucosa, stomachache, nausea, anorexia, and other health problems (Bove et al., 1995; NIOSH, 1976; Zhao et al., 1989).

In addition, epidemiological studies were conducted for workers exposed to 1,2-dichloroethane, including those employed at oil plants. However, any of these studies did not prove any relationship between 1,2-dichloroethane and the cancer rate directly (Chen et al., 2000; Hogstedt et al., 1979; Khubutiya, 1964).

Target group (gender/number of persons)	Type of exposure	Amount of exposure	Results	Reference
30 year-old male who suffers from schizophrenia	Oral	40mL (ethylene dichloride plexiglass cement)	 Soon after ingestion: He suffered from a mild redness of the conjunctiva, and his breath became pungent. After taking a gastric lavage, he vomited a large quantity of gastric juices with an irritating odor and undigested food. Subsequently, he went into shock with his breathing becoming shallow, and his skin temperature becoming lower. He was kept warm in an oxygen tent and given an intravenous drip of coramine and caffeine. 3 hours later: He recovered consciousness, but became hyperactive and repeatedly vomited. 4 hours later: He passed a large quantity of stool with a foul odor. His pulse became fast and blood pressure became low. He received a 500 cc blood transfusion and a 1,500 cc glucose injection to his vein. Subsequently he showed high susceptibility and went into a semicoma. He also vomited many times to the extent that he had serious bleeding from the intestines. 22 hours later: He died. 	Garrrison & Leadingham, 1954
63 year-old male	Accidentally ingested 1,2-dichloroethane instead of gin	2 ounces (about 60 mL)	Soon after accidental ingestion: Stupor, vomiting, diarrhea, cyanosis, decreased body temperature22 hours later: Died due to circulatory disorder.	Hueper & Smith, 1935
57 year-old male	Oral Presumably, ingestion for the purpose of suicide	40 mL	He died due to gastroenteritis, hepatic necrosis, bleeding tendency due to the deficiency of coagulation factors, and circulatory disorder.	Martin et al., 1969

 Table 7-2
 Epidemiological studies and case reports regarding humans exposed to 1,2-dichloroethane

14 year-old boy	Accidental ingestion	15 mL	 2 hours after accidental ingestion: He was staggering with a serious headache. 6 days later: He died due mainly to hypoglycemia and hypercalcemia. In his autopsy, serious hepatic necrosis, tubulonecrosis, and adrenal localized degeneration and necrosis were found. 	Yodaiken & Babcock, 1973
25 year-old male	Ingestion for the purpose of suicide	50 mL	He suffered from partial cirrhosis of the liver. However, he recovered and left hospital 87 days after ingestion.	Prezdziak & Bakula, 1975
50 year-old male	Accidental ingestion	30 mL	He died 10 hours after ingestion.	Lochhead & Close, 1951
50 year-old male	ND	Ingested 714 mg/kg/day (hours or days unknown) of 1,2-dichloroethane.	Congestion and bleeding of the kidneys	Schiinborn et al., 1970
51 year-old sailor	Inhaled the gas containing 1,2-dichloroethane when discharging the substance remaining in a tanker.	Inhaled the concentrated gas for 30 minutes.	 Soon after exposure: He crouched and showed drowsiness. Shortly after being rescued from the tank, he recovered consciousness but became susceptible to irritation. 1 day after: After complaining of drowsiness and breathing difficulties, he became delirious with tremor and coma. 5 days after: He died due to multiple organ failure. 	Nouchi et al., 1984
Human	Inhalation	ND	Irritation to nose and eyes appeared 6 minutes after inhalation of 2,000 ppm, 3-10 minutes after 4,000-4,500 ppm, 1-2 minutes after 10,000-35,000 ppm, and 1 minute after 60,000-70,000 ppm. People whose eyes were exposed to 1,2-dichloroethane suffered from pain, irritation, and dacryorrhea. However, people do not suffer from serious disorders except where they do not remove the substance	Sayers et al., 1930
Human	Inhalation	4,800mg/m ³ , 2 minutes	immediately by washing their eyes. No symptom Chronic exposure to 1,2-dichloroethane causes various health problems, such as nervous disorder, hepatic or renal dysfunction, irritation to mucosa, stomachache, nausea, and anorexia.	Sayers et al., 1930

Human	Skin	ND	Skin contact with 1,2-dichloroethane often causes serious intoxication. Continuous exposure or long-term exposure causes defatted, dry, and cracked skin.	Oak ridge National Laboratory, 1979
83 persons employed by the aircraft industry in Russia that were chronically exposed to 1,2-dichloroethane	Exposed to 1,2-dichloroethane during 70-75% of their working hours.	Inhalation exposure The exposure level was within the range of 5-40 ppm.	The rates of digestive disorder, neurosis, myeloradiculitis, and other diseases were higher for workers exposed to 1,2-dichloroethane than those unexposed. Out of 83 workers exposed to 1,2-dichloroethane, 19 persons suffered from hepatic or biliary disorder, 13 from neurosis, 11 from autonomic dystonia, 10 from goiter or hyperthyrea, and 5 from inertia.	NIOSH, 1976
118 Polish farmers	Used 1,2-dichloroethane as a fumigation.	15-60 ppm (Exposure level during work was presumably 16 mg/m ³ . From tests performed under the same conditions as in work, it is presumed that exposure level is generally 60 mg/m ³ , and the level during pouring the substance is 240 mg/m ³ .)	90 out of 118 farmers suffered from the following: conjunctival congestion (69%), hyposthenia (46%), pharyngeal redness (42%), bronchial diseases (35%), metallic taste in mouth (34%), headache (33%), dermatographia (31%), nausea (26%), cough (25%), pain in right hypochondrium (25%), conjunctival burning sensation (20%), rapid pulse (18%), and breathing difficulty after exercise (18%).	NIOSH, 1976
80,938 new born babies and 594 stillborn babies in Northern New Jersey. (excluding multiple-fetuses and those born with chromosomal abnormalities)	Drinking water (running water)	19 ppb	The odds ratio for exposure to DCE causing central nervous system damage and major circulatory disorders is 1.5 or more.	Bove et al., 1995

54 females employed at synthetic fabric plants in China and 44 spouses of males employed at such plants	Female workers were exposed to 1,2-dichloroethane during pregnancy, and spouses of male workers were exposed from at least a year before their pregnancies.	Inhalation exposure 0.4-384 ppm	The rate of early delivery increased. However, it should be considered that most cases involved exposure to other chemicals in addition to 1,2-dichloroethane. Environmental or behavioral factors should be also taken into account.	Zhao et al., 1989
Workers exposed to 1,2-dichloroethane (number of persons unknown)	ND	ND	Hyperchromic erythrocytes were found in one-third of workers exposed to 1,2-dichloroethane, but megaloblasts were not found. Medium to high sedimentation rates due to increased globulin in blood were found in about half of workers exposed. They also suffered from leucopenia due to the decrease in the absolute numbers and ratios of neutrophilic leukocytes and lymphocytes, as well as medium to advanced monocytosis. Turc's cells were also observed in the peripheral blood of one of the five samples. It is presumed that the retinal endothelium stimulated by 1,2-dichloroethane causes the development of monocytosis and Turc's cells.	Khubutiya, 1964
89 workers involved in the production of ethylene oxide	ND	ND	It is impossible to conclude that particular chemicals relate to the high death rate and cancer rate. However, ethylene oxide and 1,2-dichloroethane are the most likely causes.	Hogstedt et al., 1979

People employed at ND polyvinyl chloride plants in China (number of persons unknown)

Exposed to the mixture of vinyl chloride monomer (VCM) and 1,2-dichloroethane (EDC). Concentration levels are as follows: Low level of VCM and EDC (VCM: 0.25-0.39 ppm; EDC: 0.20-0.29 ppm); Low level of VCM and medium level of EDC (VCM: 0.16-0.27 ppm; EDC: 0.69-1.31 ppm); Medium level of VCM and EDC (VCM: median of 1.63 ppm; EDC: median of 0.77 ppm)

The frequency of sister chromatid exchange increased due to
exposure to 1,2-dichloroethane. This tendency was remarkableCheng et al.,
2000among non-smokers.2000

7.3 Toxicity to laboratory animals7.3.1 Acute toxicity

The results of an acute toxicity experiment of 1,2-dichloroethane on laboratory animals are shown in Table 7-3 (Barsoum and Saad, 1934; Heppel et al., 1945; Munson et al., 1982; Spencer et al., 1951; Stauffer Chemical Co., 1973; Union Carbide Corp., 1987). The LD_{50} of rats in an acute toxicity experiment of 1,2-dichloroethane by oral administration was 794 mg/kg.

Major symptoms observed in the acute toxicity experiment by oral administration for rats are a decrease in the locomotor activity and ataxy (Stauffer Chemical Co., 1973). Major symptoms observed for inhalation exposure of rats are depression of the central nervous system, cyanopathy, hypothermia, coma, and apnea. From the autopsy findings of surviving animals, weight increase of liver and kidney, elongation of prothrombin time, decrease of phosphatase, increase of lipid in liver, congestion, bleeding necrosis, lipid alteration, congestion in kidney, bleeding and alteration of the cortical layer were observed (Spencer et al., 1951)

	Mouse	Rat	Rabbit	Guinea pig
Oral administration LD ₅₀	413-911 mg/kg	794 mg/kg	890 mg/kg	_
Inhalation LC ₅₀	≦3,000 ppm	12,000 ppm (0.53 h)	\leq 3,000 ppm (7h)	\leq 3,000 ppm (7h)
		3,000 ppm (2.75 h)		
		1,000 ppm (7.20 h)		
Transdermal LD ₅₀		_	4890 mg/kg	_
Intratracheal LD ₅₀	_	120 mg/kg	_	_

Table 7-3 The results of acute toxicity experiment of 1,2-dicloroethane

7.3.2 Stimulus and corrosion

The results of stimulus and corrosion experiments on 1,2-dichloroethane are shown in Table 7-4.

In the report of experiments on rabbits for the stimulus of 1,2-dichloroethane, it was evaluated that the skin stimulus is medium level in 24 hours closed application, and that there was no stimulus or slight stimulus in 4 hours application (Duprat et al., 1976; Stauffer Chemical Co., 1973). As for eye stimulus, it was evaluated that there was no stimulus or slight stimulus (Duprat et al., 1976; Stauffer Chemical Co., 1973).

There were no reports on corrosion for laboratory animals as far as was surveyed.

Table 7-4 The results of stimulus and corrosion experiments on 1,2-dichloroe	thane
--	-------

Animals	Method of experiment	Period of	Volume of	Results	Reference
	Method of administration	administration	administration		
Rabbit	Skin stimulus, Draize method	Single	0.5 mL	Medium skin	Duprat et al.,
				stimulus	1976
Rabbit	Eye stimulus, Draize method	Single	0.1 mL	Slight eye	Duprat et al.,
				stimulus	1976
Rabbit	Skin stimulus	4 hours application	0.5 mL	No stimulus -	Stauffer
				Slight stimulus	Chemical Co.,
					1973
Rabbit	Eye stimulus	Single	0.1 mL	No stimulus	Stauffer
					Chemical Co.,
					1973

7.3.3 Sensitization

There were no reports on sensitization of 1,2-dichloroethane for laboratory animals as far as was surveyed.

7.3.4 Repeated dose toxicity

The results of repeated dose tests on 1,2-dichloroethane on laboratory animals are shown in Table 7-5.

As the results of oral administration experiments in which 0 ppm, 500 ppm, 1,000 ppm, 4,000 ppm, and 8,000 ppm were administered with drinking water to B6C3F1 mice, it was reported that alteration of kidney tubules was observed with male mice which were administered more than 4,000 ppm and that nine out of ten female mice administered 8,000 ppm died. The authors defined the NOAEL as 2,000 ppm for male mouse and 4,000 ppm for female mouse (U.S.NTP, 1991).

As the results of experiments in which 0 mg/kg/day, 37.5 mg/kg/day, 75 mg/kg/day, and 150 mg/kg/day of 1,2-dichloroethane were administered by gavage administration to male and female SD rats (8 weeks old) for 90 days, it was reported that an increase in relative weight of kidney and liver, a decrease of hemoglobin, and an increase in the number of thrombocytes were observed with the male group that was administered 75 mg/kg/day and an increase in relative weight of the kidney was observed with the female group that was administered the same. It was also reported that there was a decrease of weight and food intake, an increase in relative weight of brain, testis, kidney, liver and adrenal glands of male group that was administered 150 mg/kg/day, and an increase in relative weight of liver and kidney, a decrease in the number of erythrocytes, hemoglobin, hematocrit, ratio of lymphocyte, and an increase in the numbers of leukocytes and thrombocytes and in the ratios of neutrophils and monocytes were observed in the female group that were administered the same. The authors defined the NOAEL as 37.5 mg/kg/day (Daniel et al., 1994).

As the results of experiments in which 0 mg/kg/day, 30 mg/kg/day, 60 mg/kg/day, 120 mg/kg/day, 240 mg/kg/day, and 480 mg/kg/day of 1,2-dichloroethane were administered by gavage to male F344 rats (6 weeks old) for 13 weeks and 0 mg/kg/day, 18 mg/kg/day, 37 mg/kg/day, 75 mg/kg/day, 150 mg/kg/day, and 300

mg/kg/day to female F344 rats (same age) for the same period, it was reported that, with male groups, cerebellar necrosis was observed with the group administered 240 mg/kg/day, and death (all samples), forestomach mucosal hyperplasia, inflammation, and thymus necrosis were observed with the groups administered 240 mg/kg/day or more. As for female groups, death (9 out of 10 samples), cerebellar necrosis, forestomach mucosal hyperplasia, inflammation, and thymus necrosis were observed with the groups administered 300 mg/kg/day. The authors defined the NOAEL as 120 mg/kg/day for male rats and 150 mg/kg/day for female rats (Morgan et al, 1990; U.S. NTP, 1991).

In addition, results were reported by the experiments in which 0 ppm, 500 ppm, 1,000 ppm, 2,000 ppm, 4,000 ppm, and 8,000 ppm were administered with drinking water for 13 weeks to F344 rats, SD rats, and Osborne-Mendel rats (6 weeks old) respectively. With F344 rats, reversible alteration of kidney tubules epithelium was observed with the group administered 1,000 ppm or more. With Osborne-Mendel rats and SD rats, an increase in the relative weight of the liver or kidneys was observed from the smallest dosage, but no influence was observed by administration of 1,2-dichloroethane in the tests for hematology, blood chemistry parameters, and pathologic histology (Morgan et al., 1990; U.S. NTP, 1991). This assessment report therefore does not judge the changes as having an important influence on deciding NOAEL. Incidentally, in the above 2 experiments (Morgan et al., 1990; U.S. NTP, 1991), the difference of toxicity due to the difference of administered methods of drinking water and gavage administration was examined by setting the doses administered to the F344 rats as almost the same, and the result of experiments reported that the changes appeared stronger in the case of gavage administration.

With inhalation exposure, results were reported of experiments by which 0 ppm, 5 ppm, 10 ppm, 50 ppm, and 150 ppm were administered to male and female SD rats starting from 3 months old for 3, 6, or 18 months and to those starting from 12 months old for 12 months, and of the hematological and blood biochemical tests. No influence was observed in any of the groups exposed from 3 months old for 3, 6, or 18 months. On the other hand, with those exposed from 12 months old for 12 months, increase of ALT and uric acid and a decrease of cholesterol were observed with the group of both male and female rats administered 50 ppm or more, an increase in γ -GTP was observed with the female group administered the same amount, and an increase of glucose was observed with male and female groups administered 150 ppm (Spreafico et al., 1980). Considering that histopathological examination was not conducted with this experiment, and taking into consideration that the change in the serum parameter that shows hepatotoxicity was observed, although such influence was observed only in the exposure to the older animals (12 months old), this primary assessment report judges the NOAEL of this experiment as 10 ppm (41.1 mg/m³).

These results shows that the target organs are the liver and kidneys, however it is necessary to note that most of the repeated dose toxicity tests for 1,2-dichloroethane using mice and rats were conducted using limited end points of a small number of groups. As a result of the above, the minimum NOAEL for oral intake is 37.5 mg/kg/day of 90 days gavage administration using SD rats (Daniel et al., 1994), and that for inhalation exposure is 10 ppm (41.1 mg/m³) of 12 months exposure using SD rats (Spreafico et al., 1980).

Animals	Method of administration	Period of administration	Volume of administration Results		Reference
B6C3F ₁ Mouse,	Drinking	13 weeks	0, 500, 1,000, 2,000, 4,000, or 8,000 ppm	0, 500, 1,000, 2,000, 4,000, or 8,000 ppm 4,000 ppm U	
6 weeks old,	water		(Equivalent to	Male:	
male and female			Male:	Slight alteration of kidney tubule	
			0, 249, 448, 781, 2,710, or 4,207 mg/kg/day and	8,000 ppm	
			Female:	Male:	
			0, 244, 647, 1,182, 2,478, or 4,926 mg/kg/day)	Alteration of kidney tubule	
				Female:	
				9 dead out of 10	
				NOAEL:	
			Male:		
				2,000 ppm (equivalent to 781	
				mg/kg/day)	
				Female:	
				4,000 ppm (equivalent to 2,478	
				mg/kg/day)	
SD mouse	Gavage	10 days	0, 30, 100, or 300 mg/kg/day	100 mg/kg/day	Daniel et al., 1994
male and female,	administration			Male:	
8 weeks old,				Increase in relative weight of liver,	
10 mice/group				increase of serum cholesterol,	
				inflammation of forestomach mucous	
				and lamina propria	
				Female:	

Table 7-5 The results of the repeated dose toxicity test of 1,2-dichloroethane
--

				Inflammation of forestomach mucous and lamina propria 300 mg/kg/day Male: Dead (8 samples) Female: Dead (all samples)	
SD mouse male and female,	Gavage administration	90 days	0, 37.5, 75, or 150 mg/kg/day	75 mg/kg/day Male:	Daniel et al., 1994
8 weeks old,				Increase in relative weights of kidney	
10 mice/group				and liver, decrease of hemoglobin,	
				increase of the number of thrombocytes	
				Female:	
				Increase in relative weights of kidney	
				150 mg/kg/day	
				Male:	
				Decrease of weight and food intake,	
				increase in relative weights of brain,	
				testis, kidney, liver, and adrenal glands	
				Female:	
				Increase in relative weights of kidney	
				and liver, decrease in the number of	
				erythrocyte, hemoglobin, hematocrit,	
				ratio of lymphocyte, increase in the	
				number of leukocyte and thrombocyte	

				and in the ratio of neutrophils and	
				monocytes	
				NOAEL: 37.5 mg/kg/day	
F344 rat	Gavage	13 weeks	Male: 0, 30, 60, 120, 240, or 480 mg/kg/day	Male:	Morgan et al., 1990;
male and female,	administration		Female: 0, 18, 37, 75, 150, or 300 mg/kg/day	240 mg/kg/day	U.S. NTP, 1991
6 weeks old,				Dead (all samples), cerebellar necrosis,	
10 rats/group				forestomach mucosal hyperplasia,	
				inflammation, thymus necrosis	
				480 mg/kg/day	
				Dead (all samples), forestomach	
				mucosal hyperplasia, inflammation,	
				thymus necrosis	
				Female:	
				300 mg/kg/day	
				Dead (9 samples), cerebellar necrosis,	
				forestomach mucosal hyperplasia,	
				inflammation, thymus necrosis	
				NOAEL:	
				Male: 120 mg/kg/day	
				Female: 150 mg/kg/day	
F344 rat	Drinking	13 week	0, 500, 1,000, 2,000, 4,000, or 8,000 ppm	1,000 ppm or more	Morgan et al., 1990;
male and female,	water		(Equivalent to	Male and female: reversible alteration	U.S. NTP, 1991
6 weeks old,			Male:	of kidney tubules epithelium	
10 rats/group			0, 49, 86, 147, 259, or 515 mg/kg/day and		
			Female:		

			0, 58, 102, 182, 302, or 601 mg/kg/day)				
SD rat			(Equivalent to	500 - 8,000 ppm			
male and female,			Male:	Increase in relative weight of kidney or			
6 weeks old,			0, 60, 99, 165, 276, or 518 mg/kg/day and	liver			
10 rats/group			Female:				
			0, 76, 106, 172, 311, or 531 mg/kg/day)				
Osborne-Mendel			(Equivalent to	500 - 8,000 ppm			
rat			Male:	Increase in relative weight of kidney or			
male and female,			0, 54, 88, 146, 266, or 492 mg/kg/day and	liver			
6 weeks old,			Female:				
10 rats/group			0, 82, 126, 213, 428, or 727 mg/kg/day)				
SD rat	Inhalation	From 3 months old, for 3	0, 5, 10, 50, or 150 ppm	No influence observed in any of the	Spreafico	et	al.,
male and female,		months, 6 months, or 18	(Equivalent to 0, 20.6, 41.1, 205.5, or 616.5	groups.	1980		
8-10 rats		months	mg/kg/day)				
		Administered from 12		Group administered 50 ppm or more			
		months of age for 12		Male and female:			
		months		Increase of ALT, decrease of			
				cholesterol, increase of uric acid			
				Female: increase of γ -GST			
		7 hours/day		150 ppm:			
		5 days/week		Male and female: increase of glucose			
				NOAEL: 10 ppm (41.1 mg/m ³)			
				Judgment of this assessment report			

7.3.5 Reproductive and developmental toxicity

The results of reproductive and developmental toxicity experiments for 1,2-dichloroethane are shown in Table 7-6.

As the results of experiments on ICR mice in which 0 mg/kg/day, 5 mg/kg/day, 15 mg/kg/day, and 50 mg/kg/day of 1,2-dichloroethane were administered with drinking water to F_0 for 25 weeks (5 weeks + twice during mating period, pregnancy, lactation period, 2 weeks discontinuation of administration) and to F_1 for 24 weeks (10 weeks + mating, pregnancy, lactation period, 2 weeks discontinuation of administration), it was reported that no influence was observed in either parent or progeny for any of the groups (Lane et al., 1982).

As the results of teratogenicity tests by oral administration and inhalation exposure to female SD rats, reproductive toxicity such as an increase of embryo absorption was observed in the parent groups of 6 - 20 days pregnancy administered 2.0 mmol/kg/day or more by oral administration and in the parent groups of 6 - 15 days or 6 - 20 days pregnancy administered 300 ppm or more by inhalation exposure, but no influence was observed with the progeny (Payan et al., 1995; Rao et al., 1980; Schlahcter et al., 1979).

As the result of experiments on male and female SD rats in which 0 ppm, 25 ppm, 75 ppm, 150 ppm (103 mg/m³, 308 mg/m³, 617 mg/m³) of 1,2-dichloroethane were administered by inhalation exposure before mating, twice during pregnancy, and during lactation period, no influence was observed with either parent or the progeny in any of the groups (Murray et al., 1980; Rao, et al., 1980).

As the result of experiments on female NZW rabbits by which 0 ppm, 100 ppm, 300 ppm (0 mg/m³, 411 mg/m³, 1,233 mg/m³) of 1,2-dichloroethane were administered by inhalation exposure for 13 days from 6 days pregnancy to 18 days pregnancy, some of the parents administered 100 ppm or more died, but no influence was observed with any of the groups of the progeny (Rao, et al., 1980; Schlahcter et al., 1979).

As the result of the above reproductive and developmental toxicity tests, the NOAEL of mouse parent and progeny is assumed to be 50 mg/kg/day or more by oral administration for 2 generations of mice and the NOAEL of rat parent and progeny is assumed to be 150 ppm or more by inhalation exposure for 1 generation. In addition, as the result of teratogenicity tests to pregnant rats, the NOAEL of the parent is 100 ppm by inhalation exposure and 160 mg/kg/day by oral administration, but no influence was observed with progeny up to 300 ppm by inhalation exposure and 240 mg/kg/day by oral administration.

Animals	Method of administration	Period of administration	Volume of administration	Results	Reference
ICR Mouse	Drinking water	F ₀ : 25 weeks	Equivalent to 0, 5, 15, or 50	No influence was observed in both parent and	Lane et al., 1982
male and female,		(5 weeks + twice during mating period, pregnancy,	mg/kg/day	progeny with all groups	
9 weeks old (F ₀)		lactation period, 2 weeks discontinuation of			
Male:		administration)			
10 mice/group,					
Female:					
30 mice/group		F1: 24 weeks		NOAEL: 50 mg/kg/day or more	
		(10 weeks + mating period, pregnancy, lactation period,			
		2 weeks discontinuation of administration)			
SD rat	Oral administration	6-20 days pregnancy, laparotomy on	0, 1.2, 1.6, 2.0, or 2.4	Parents	Payan et al., 1995
female,		21st day	mmol/kg/day	2.0 mmol/kg/day:	
25-26 mice/group,			(0, 120, 160, 200, or 240	Inhibition of weight increase, dead fetus,	
no report about age			mg/kg/day)	increase in embryo absorption	
				2.0 mmol/kg/day:	
				Premature delivery, increase of dead birth,	
				increase in embryo absorption	
				Progeny	
				No influence was observed in any of the groups	
SD rat	Inhalation	6-15 days pregnancy, laparotomy on	0, 150, 20, 250, or 300 ppm/6	Parents	Payan et al., 1995
female,	exposure	21st day	hours/day	300 ppm:	
25-26 mice/group,				Inhibition of weight increase, death	

T = 11 = (T = 1) = 0	1 . 11 1	. 1	• , 1	
Table 7-6 The results of re	enroductive and develo	onmental toxicity ex	neriments on	2-dichloroethane
	sproductive und deven	spinonian tostiony os	permiterity on i	2 dicinoroculture

no report about age				Progeny	
				No influence was observed in any of the groups	
SD rat	Inhalation	6-15 days pregnancy, laparotomy on	0, 10, or 300 ppm/7	Parents	Rao et al., 1980
female,	exposure	21st day	hours/day	100 ppm:	
16-30 mice/group,			(Equivalent to	Relatively heavy weight	
no report about age			$0,411, \text{ or } 1,233 \text{ mg/m}^3$	300 ppm:	
				Lethargy, ataxia, decrease of weight, decrease of	
				food intake, death, all embryos died	
				Progeny	
				No influence was observed in any of the groups	
SD rat	Inhalation	6-15 days pregnancy, laparotomy on	0, 10, or 300 ppm/7	Parents	Schlahcter et al.,
female,	exposure	21st day	hours/day	100 ppm:	1979
30 rats (groups			(Equivalent to	Promotion of weight increase, increase of water	
administered 0 and 100			$0,411, \text{ or } 1,233 \text{ mg/m}^3$	intake	
ppm),				300 ppm:	
16 rats (group administered				10 out of 16 died, decrease of absolute weight of	
300 ppm),				liver, absorption in all embryos	
no report about age				Progeny	
				No influence was observed in any of the groups	
NZW rabbit	Inhalation	6-18 days pregnancy, laparotomy on	0, 100, or 300 ppm/7	Parents	Schlahcter et al.,
female,	exposure	29th day	hours/day	100 ppm or more:	1979; Rao et al.,
19-21 rabbits/group, no				Death	1980
report about age					

SD rat	Inhalation	Male:	0, 25, 75, or 150 ppm/6	No influence was observed in any of the groups	Murray et al.,
	exposure	60 days + twice during mating period + 0-20 days	hours/day	of parent and progeny	1980; Rao et al.,
		pregnancy of female + 5-20 days after delivery of	5 days/week		1980
		female + 7 days (recovery period)	(7 days/week during mating		
		Female:	period)	NOAEL: 150 ppm or more	
		60 days + twice during mating period + 0-20 days	(Equivalent to 0, 103, 308, or		
		pregnancy + 5-20 days after delivery + 7 days (recovery	617 mg/m^3)		
		period)			

7.3.6 Genetic Toxicity

Table 7-7 shows the result of 1,2-dichloroethane genetic toxicity tests.

1,2-dichloroethane demonstrates genetic toxicity in in vitro and in vivo tests for a range of endpoints.

For in vitro testing, reverse mutation test of salmonella typhimurium using bacteria was positive regardless of whether or not S9 was added (Barber et al., 1981; Brem et al., 1974; Rannug et al., 1978). Rannug et al (1978) found that addition of reduced glutathione to S9 strengthens mutation activity, and glutathione-S-transferase is related to this activity, and also 1,2-dichloroethane's glutathione conjugate has strong mutation activity. In tests with coli bacillus, DNA recovery testing without S9 addition was positive (Brem et al., 1974). Also, prophage induction testing had a weak positive reaction when S9 was added (DeMarini and Brooks, 1992). However, in in vivo testing using coli bacillus K12/343/113 given intraperitoneally to a mouse by way of a host, mutation was not induced (King et al., 1979). In the test using A. nidulans, genetic mutation and body cell

recombination were negative, but nondisjunction of chromosome (heteroploidy) was reported (Crebelli and Carere,

1988). As for DNA binding, DNA adducts were found in the experiment using regular DNA and those incubated in a test tube. The amount of these adducts increased by adding liver microsome or cytoplasmic soluble fraction (Arfellini et al., 1984).

In the test using cultured cells, several genetic mutation tests with human cells and Chinese hamster ovary (CHO) cells were reported and they were positive. In the test using two kinds of human cells, there was a dose-related, higher mutation induction in AHH-1 cell which had strong glutathione S-transferase activity (Crespi et al., 1985; Ferreri et al., 1983; Tan and Hsie, 1981). In the transformation test, BALB/c-3T3 cell was exposed to vapor in a sealed place and the result was negative (Arthur D. Little, Inc., 1983). However, transformation was promoted in a test using hamster fetus cell injected with SA7 virus using the same vapor method (Hatch et al., 1983). Cell transformation was observed in the experiment with mouse C3H/10T1/2 cell (Schultz et al., 1992). In human lymph cell testing, there was no clear relationship to dosage, but in vitro micronucleus testing and comet assays were both positive when S9 was not added (Tafazoli et al., 1998). In irregular DNA synthesis testing, the result was positive when S9 was added (Perocco and Prodi, 1981).

For in vivo tests, there was no significant increase of micronucleus in bone marrow and peripheral blood when 1,2-dichloroethane was given intraperitoneally to a mouse or given orally to a transgenic mouse for 41 weeks (Armstrong and Galloway, 1993; King et al., 1979; Sasaki et al., 1994).

Sister chromatid exchange testing and comet assays with mouse were both positive (Giri and Que Hee, 1988; Sasaki et al., 1998). In comet assays, stomach, liver, kidney, bladder, lung, brain, and bone marrow were studied, and DNA damage was found in all of those organs. Also, one strand of DNA was broken in the liver when DNA damage testing was conducted on the mouse (orally and intraperitoneally). However, the result was negative for inhalation exposure testing (Storer and Conolly, 1983, 1985; Storer et al., 1984). As for DNA binding, several tests with mice and rats were reported, and all were positive. While a high level of binding was found in the liver and kidney, not much binding occurred in the lungs. Also, more binding occurred in rats than mice (Arfellini et

al., 1984; Baertsch et al., 1991; Banerjee, 1988). Eye color reverse mutation test and sex-linked, recessive, fatal test, wing hair spot test, and chromosome loss and nondisjunction test with drosophila were reported, and they were all positive (Kramers et al., 1991; Nylander et al., 1978; Romert et al., 1990; Valencia et al., 1984; Vogel and Nivard, 1993).

	Test name	Test material	Test condition	Dose	Re	sult	Reference
					-S9	+S9	
in	Reversion test	Salmonella typhimurium	Plate method,	(µmol/plate)			Barber et al., 1981
vitro		TA1535	Sealed-gas exposure	31.8-231.8	-	-	
		TA100		31.8-231.8	+	+	
		TA1535		31.8-231.8	+	+	
		TA1537		Unknown	-	-	
		TA1538		Unknown	-	-	
		Salmonella typhimurium	Spot test	(µmol)			Brem et al.,1974
		TA1530		10	+	NT	
		TA1535		10	+	NT	
		TA1538		10	+	NT	
		Salmonella typhimurium	Plate method	(mol/plate)			Rannug et al., 1978
		TA1535		20-60	+	+	
	DNA repair test	Escherichia coli poliA ⁺ /A ⁻	Spot test	10µL	+	NT	Brem et al., 1974
	Prophage induction test	Escherichia coli TH-008	Overnight treatment as stated in text.	(μM)			DeMarini & Brooks, 1992
			No record of treatment times.		-	w+	
				+\$9:19,736-1,263,136			
	Chromosome	Aspergillus nidulans P1	3-hour treatment in liquid medium.	0-2 %	+	NT	Crebelli & Carere, 1988
	nondisjunction test						
	Gene mutation test	Aspergillus nidulans 35	Treatment in buffer solution.	0-2 %	+	-	
	Somatic recombination	Aspergillus nidulans P1	3-hour treatment in liquid medium.	0-2%			
	test				-	-	
	DNA binding test	Commercial DNA	Incubation	2.5µCi ¹⁴ C-DCE/1.5mgDNA	+	+	Arfellini et al., 1984

Table 7-7 The result of	of genotoxicity te	st of 1,2-dichloroethane
ruore / / ruorebane (

			(37°C, 90 minutes)				
	Gene mutation test	СНО-К1-ВН4	5-hour treatment	-S9: 5-50 mM	+	+	Tan & Hsie, 1981
		(HGPRT)		+S9:1-3 mM			
		Human lymphoblast		(µg/mL)			Crespi et al., 1985
		AHH-1(HGPRT)	28-hour treatment	100-1,000	+	NT	
		TK6(TK+/-)	20-hour treatment	200-1,000	+	NT	
		Human EUE cell	24-hour treatment	$10^{-3}-5\times10^{-2}$ M	+	NT	Ferreri et al., 1983
	Cell transformation test	BALB/c-3T3	24-hour vapor exposure in closed	4-250 μg/mL	-	NT	Arthur D. Little Inc., 1983
		cl. 1-13	system.				
			72-hour treatment in open system.				
				5-50 μg/mL	-	NT	
		SA7 virus-inoculated hamster fetal cell	20-hour vapor exposure in closed	0.2-0.8 mL/flask	+	NT	Hatch et al., 1983
			system.				
		C3H/10T1/2	48-hour treatment	200-600 µg/mL	+	NT	Schultz et al., 1992
	Micronuclei test	Human lymphocyte	-S9: 72 hours	2-20 mM	+	-	Tafazoli et al., 1998
			+S9: 3 hours				
	Comet assay	Human lymphocyte	3-hour treatment	2-6 mM	+	-	
	Unscheduled DNA	Human lymphocyte	4-hour treatment	2.5-10μL/mL	-	+	Perocco & Prodi, 1981
	synthesis test						
in	Micronuclei test	ICR mouse	Intraperitoneal injection, peripheral	0-360 mg/kg	-	-	Sasaki et al., 1994
vivo			blood				
		NMRI mouse	24-hour intraperitoneal injection twice	4 mmol/kg	-	-	King et al., 1979

	Eµ-PIM-1transgenic mouse	Oral administration	Male: 100, 200 mg/kg		Armstrong & Galloway, 1993
		(7 days/week)	Female: 150, 300 mg/kg		
		14, 41 weeks		-	
		peripheral blood			
Host-mediated assay	Escherichia coli K12(343/113)/N	Single intraperitoneal injection	2 mmol/kg		King et al., 1979
	MRI mouse		(Maximum tolerated dose)	-	
Sister chromosome	Swiss mouse	Single intraperitoneal injection	0-16 mg/kg		Giri & Que Hee, 1988
exchanges (SCEs)		Bone narrow		+	
Comet assay	CD-1 mouse	Single intraperitoneal injection	200 mg/kg		Sasaki et al., 1998
		Stomach, liver, kidney, bladder, lung,		+	
		brain and bone narrow			
DNA damage test (single-strand break)	B6C3F1 mouse	Single intraperitoneal injection, liver	1-3 mmol/kg	+	Storer & Colony, 1983
(single siture break)	B6C3F ₁ mouse	Single oral administration,	Oral 100-400 mg/kg	+	Storer et al., 1984
		intraperitoneal injection and inhalation	Intraperitoneal 100-300 mg/kg	+	
		exposure	Inhalation 150-500 ppm		
		Liver		-	
	B6C3F ₁ mouse	Single intraperitoneal injection, liver	200 mg/kg	+	Storer & Colony, 1985
DNA binding test	Arochlor 1254-pretreated rat/mouse	Single intraperitoneal injection, liver	1.38 mg/animal	+	Banerjee, 1988
		ongle multipertonear injection, irver	1.50 mgainnai	+	Durleijee, 1900
	BALB/c mouse	Single intraperitoneal injection	8.7µmol/kg	+	Arfellini et al., 1984
	Wistar rat	Stomach, liver, kidney, lung,		+	
	F344 rat	Inhalation exposure	80 ppm x 4 hours		Baertsch et al., 1991
		Liver, lung	4,400 ppm x few minutes	+	

Eye-color re	eversion test	Drosophila melanogaster	Feeding	0.1-0.5% (Larval stage)	+	Nylander et al., 1978
		Drosophila melanogaster	Inhalation exposure	200-400 ppm x 17 hours	+	Vogel & Nivard, 1993
				(Larval stage)	Т	
Sex-linked	recessive	Drosophila melanogaster	Inhalation exposure	800 mg/m ³ x 6 hours		Kramers et al., 1991
lethal test				8 mg/m ³ x 96 hours	+	
				7 mg/m ³ x 1 week	+	
				$7 \text{ mg/m}^3 \text{ x } 2 \text{ weeks}$		
Wing hair s	spot test	Drosophila melanogaster	Inhalation exposure	40-250 mg/m ³		
				(From embryonic stage to pupal stage)	+	
Wing hair s	spot test	Drosophila melanogaster	Feeding	50-1,000 ppm	+	Romert et al., 1990
				(Time unknown)	+	
Chromoson	ne loss test/	Drosophila melanogaster	Inhalation exposure	Unknown		Valencia et al., 1984
Somatic	recombination				+	
test						

-: negative, +: positive, w+: weak positive, NT: not tested

7.3.7 Carcinogenicity

The results of the carcinogenicity test for 1,2-dichloroethane are shown in Chart 7-8. For gavage administration to B6C3F male and female mice, male mice were administered 0, 97, 195 mg/kg/per day and female mice were administered 0, 149, 299 mg/kg/per day for 78 weeks. The incidence rate for bronchiolus/alveolar adenoma increased for male mice which were administered 97, 195 mg/kg/per day, and the incidence rate for bronchiolus/alveolar adenoma, cancer of the mammary gland, endometrium polyp/sarcoma increased for female mice which were administered 149 mg/kg/per day and for female mice which were administered 299 mg/kg/per day, in addition to the changes for the 149 mg group, incidence rate for gastric epidermoid cancer increased. (NCI, 1978; Ward, 1980)

For inhalation administration, there weren't any significant effects from an experiment of 78 weeks exposure of 0, 5, 10, 50, 150, 250 ppm to female Swiss mice (Maltoni et al., 1980). On the other hand, in an experiment of 104 weeks exposure of 0, 10, 30, 90 ppm to male and female mice, the incidence rate for hepatic sarcoma increased for male mice which were administered 10, 30, 90 ppm and the incidence rate for hepatocyte adenoma, bronchiolus/alveolar adenoma/cancer, bronchus/alveolar adenocarcinoma, mammal gland adenocarcinoma, and endometrium polyp increased for female mice which were administered 90 ppm. (Nagano et al., 1998)

For percutaneous administration, in an experiment administering 0, 42, 126 mg/per mouse three times a week from the age of six to eight weeks until 576 days of age to male and female ICR mice, the incidence rate for lung tumor/papilloma increased for female mice that were administered 126 mg. (Van Duuren et al., 1979)

For gavage administration to rats, in an experiment administering 0, 47, 95 mg/kg/per day of 1,2-dichloroethane for 78 weeks to male and female Osborne-Mendel rats, the incidence rate for hypodermal gland adenoma, gastric epidermoid cancer, vascular sarcoma increased for male rats that were administered over 47mg/kg/per day and the incidence rate for adenocarcinoma and mammary gland tumor increased for female rats that were also administered over 47mg/kg/per day (NCI, 1978; Ward, 1980).

In administering mixed bait to male and female rats (genealogy unknown), there weren't any effects from experiments administering 0, 250, 500 ppm for a period of two years (Alumot et al., 1976).

For inhalation exposure, in experiments of exposure of 0, 5, 10, 50, 150, 250 ppm for 78 weeks to SD rats, the incidence rate for fibroma of mammary gland and fibroma adenoma increased for female rats that were administered 5, 10, 50, 150, 250 ppm (Maltoni et al., 1980). Also in experiments of exposure of 0, 10, 40, 160 ppm for 104 weeks to F344 rats, there weren't any effects on either male and female rats that were administered 10 ppm, but incidence rates for hypodermic fibroma of mammary gland, mesothelioma for male rats that were administered 160 ppm, and incidence rates for hypodermic fibroma, fibroma for female rats that were administered 160 ppm increased (Nagano et al., 1998). However, there weren't any effects on either male or female rats that were administered 0, 50 ppm for a period of two years (Cheever et al., 1990).

Effects of 1,2-dichloroethane in oncogenecity tests were as follows. For oral administration, tumors were found hypodermically, in the stomach, mammary gland, lungs, the uterus, and the vascular tract. For inhalation exposure, tumors were found hypodermically, in the mammary gland, the uterus, and the liver and for

percutaneous administration, tumors were found in the lungs.

Further, the results of carcinogenicity assessment by international agencies are shown in Chart 7-9. IARC is classified under Group 2B (substance which is possibly carcinogenic to humans).

Animal	Administration method	Administration period	Dose	Result	Reference
B6C3F ₁ mouse	Gavage	78 weeks	Male:	Male:	NCI, 1978;
(Male, Female)	administration	+	0, 97, or 195 mg/kg	Increase in bronchiolar/alveolar adenoma	Ward, 1980
Control group:		13 weeks	(Equal to 0, 100, or 200 mg/kg)	(0, 97, or 195 mg/kg group: 0/19, 1/47, or 15/38)	
20 mice/group		(Observation period)	Female:	Female:	
Treated group:			0, 149, or 299 mg/kg	Increase in bronchiolar/alveolar adenoma	
50 mice/group			(Equal to 0, 200, or 400 mg/kg)	(0, 144, or 299 mg/kg group: 1/20, 7/50, or 15/48)	
				Increase in adenocarcinoma in glandula mammaria	
				(0, 144, or 299 mg/kg group: 0/20, 9/50, or 7/48)	
				Increase in endometrial polyp/ sarcoma	
				(0, 144, or 299 mg/kg group: 0/20, 5/49, or 5/47)	
				Increase in squamous carcinoma in stomach	
				(0 or 299 mg/kg group: 1/20 or 5/48)	
Swiss mouse	Inhalation	78 weeks	0, 5, 10, 50, 150, or 250 ppm	No effects in each group	Maltoni et al.,
(Male, Female)		(7 hours/day,			1980
11 weeks old		5 days/week)			
90 mice/group					
BDF ₁ mouse	Inhalation	104 weeks	0, 10, 30, or 90 ppm	Male:	Nagano et al.,
(Male, female)		(6 hours/day,		Increase in angiosarcoma in liver	1998
6 weeks old		5 days/week)		(0, 10, 30, or 90 ppm group: 0/50, 4/49, 6/50, or 5/50)	
50 mice/group				Female:	
				Increase in hepatocellular adenoma	
				(0, 10, 30, or 90 ppm group: 1/49, 1/50, 1/50, or 6/50)	

Table 7-8 Result of carcinogenicity of 1,2-dichloroethane

				Increase in bronchiolar/alveolar adenoma or bronchiolar/alveolar cancer (0, 10, 30, or 90 ppm group: 5/49, 1/50, 4/50, or 11/50) Increase in adenocarcinoma in glandula mammaria (0, 10, 30, or 90 ppm group: 1/49, 2/50, 1/50, or 6/50) Increase in endometrial polyp (0, 10, 30, or 90 ppm group: 2/49, 0/50, 1/50, or 6/50)	
Ha mouse	Transdermal	Min: 6-8 weeks	0, 42, or 126 mg/mouse	Male:	Van Duuren et
ICR mouse	administration	Max: 576 days		No effects in each group	al., 1979
(Male, female)		(3 times/week)		Female:	
6-8 weeks old				Increase in lung papilloma	
30 mice/group				(0, 42, or 126 mg/kg group: 11/30, 17/30, or 26/30)	
Osborne-Mendel	Gavage	78 weeks	0, 47, or 95 mg/kg	Male:	NCI, 1978;
mouse	administration	+	(Equal to 0, 0-75, or 0-150 mg/kg)	Increase in subcutaneous fibroma	Ward, 1980
(Male, female)		32 weeks		(0, 47, or 95 mg/kg group: 0/20, 5/50, or 6/50)	
20 mice/control		(Observation period)		Increase in squamous carcinoma in stomach	
50 mice/treated				(0, 47, or 95 mg/kg group: 0/20, 3/50, or 9/50)	
				Increase in angiosarcoma	
				(0, 47, or 95 mg/kg group: 0/20, 9/50, or 7/50)	
				Female:	
				Increase in adenocarcinoma in glandula mammaria	
				(0, 47, or 95 mg/kg group: 0/20, 1/50, or 18/50)	
				Increase in mammary gland tumor	
				(0, 47, or 95 mg/kg group: 0/20, 14/50, or 8/50)	
Rat	Oral	2 years	0, 250, or 500 ppm	No effects in any male/female group.	Alumot et al.,

(Line unknown)	administration				1976
5 weeks old	(Feeding)				
(Male, female)					
18 rats/group					
SD rat	Inhalation	78 weeks	0, 5, 10, 50, or 150-250 ppm	Male:	Maltoni et al.,
(Male, female)		(7 hours/day,		No effects in any group.	1980
12 weeks old		5 days/week)		Female:	
90 rats/group				Increase in breast fibroma/ fibroadenoma	
				(5, 10, 50, or 150-250 ppm group:	
				65/90, 43/90, 58/90, or 52/90)	
F344 rat	Inhalation	104 weeks	0, 10, 40, or 160 ppm	Male:	Nagano et al.,
(Male, female)		(6 hours/day,		Increase in subcutaneous fibroma	1998
6 weeks old		5 days/week)		(0, 10, 40, or 160 ppm group:	
50 rats/group				6/50, 9/50, 12/50, or 15/50)	
				Increase in breast fibroadenoma	
				(0, 10, 40, or 160 ppm group:	
				0/50, 0/50, 1/50, or 5/50)	
				Increase in mesothelioma	
				(0, 10, 40, or 160 ppm group:	
				1/50, 1/50, 1/50, or 5/50)	
				Female:	
				Increase in subcutaneous fibroma	
				(0, 10, 40, or 160 ppm group:	
				0/50, 0/50, 1/50, or 5/50)	
				Increase in breast fibroadenoma	

				(0, 10, 40, or 160 ppm group:		
				4/50, 1/50, 6/50, or 13/50)		
				Increase in adenoma in glandula mammaria		
				(0, 10, 40, or 160 ppm group:		
				3/50, 5/50, 5/50, or 11/50)		
				Increase in adenocarcinoma in glandula mammaria		
				(0, 10, 40, or 160 ppm group:		
				1/50, 0/50, 1/50, or 5/50)		
SD rat	Inhalation	2 years	0 or 50 ppm	No effects in any male/female group	Cheever e	et al.,
(Male, female)					1990	
6 weeks old						
50 rats/group						

Organization/source	Classification	Classification criteria
IARC (2001)	Group 2B	Possibly carcinogenic to humans.
ACGIH (2002)	A4	Not classifiable as a human carcinogen
Japan Society for Occupational	Crown 2 D	Possibly carcinogenic to humans.
Health	Group 2-B	Substance with comparably insufficient evidence.
		Probable human carcinogen.
LLS EDA (2002)	Crown D2	Agents for which there is "sufficient: evidence from
U.S. EPA (2002)	Group B2	animal studies and for which there is "inadequate
		evidence" or "no data" from epidemiologic studies.
U.S. NTP (2002)	R	Reasonably anticipated to be a human carcinogen.

Table 7-9 Carcinogenicity evaluation of 1,2-dichloroethane in international organizations, etc.

7.4 Effects on Human Health (Summary)

In the tests of humans and animals, 1,2-dichloroethane is quickly absorbed orally, by inhalation, and through skin.

1,2-dichloroethane irritates mucosa, and shows strong and acute toxicity when a large amount is taken orally or by exposure to high density gas, which can be fatal.

Experiments with rabbits reported irritability, irritability to skin was reported as none to medium, and irritability to the eyes was reported as none to light. As for sensitivity, there are no reports for either humans or animals.

In the test for acute toxicity, 1,2-dichloroethane was given orally to animals. LD_{50} was 794 mg/kg for rats.

As for repeated administration toxicity of 1,2-dichloroethane to rats, the target organs were liver, kidney, stomach, cerebellum, and the blood system. NOAEL was 37.5 mg/kg/day for compulsive oral administration for 90 days, and 10 ppm (41.1 mg/m3) for 12-month inhalation exposure test.

As for reproduction toxicity, there is teratogenic action in 1,2-dichloroethane. In the test of teratogenic action by inhalation to pregnant rats, NOAEL of parents was 100 ppm (approximately 411mg/m3/day), while 300 ppm (approximately 1,233 mg/m3/day) for babies. Also, NOAEL of 2-generation mice oral administration test is estimated to be 50 mg/kg/day or more for parents and babies, and NOAEL of one generation rat inhalation exposure test is estimated to be 150 ppm (approximately 617 mg/m3) or more for parents and babies.

Mutagenic property of 1,2-dichloroethane was positive in most in vitro tests such as the reverse mutation test by salmonella typhimurium, genetic mutation test of cultured cells of humans and Chinese hamster ovary, transformation test by mouse C3H/10T1/2 cells, small cells test, comet assay etc. For in vivo tests, there was no significant increase in mouse micronuclei assay. However, the mouse sister chromatid exchange test, comet assay, and DNA damage tests were positive. Also, the mouse/rat DNA binding test and several other tests with drosophila were positive.

1,2-dichloroethane has a tendency to cause cancer in mice and rats, and cancer can be found in the skin, stomach, lacteal glands, lungs, uterus, blood vessels when it is orally administered, in skin, lacteal glands, uterus, liver when it is inhaled, and in lungs when it is administered through skin.

These mutagenic properties and causes of cancer are considered to be due to binding of

1,2-dichloroethane's glutathione conjugate and DNA. IARC is categorized as Group 2B (materials which may have a potential to cause cancer to humans).

Reference

(searched in April 2001)¹⁾

- ACGIH, American Conference of Governmental Industrial Hygienists (2002) Doccumentation of the threshold limit values and biological exposure indices. 7th ed.
- Alumot, E., Nachtomi, E., Mandel, E. and Holstein, P. (1976) Tolerance and acceptable daily intake of chlorinated fumigants in the rat diet. Fd. Cosmet. Toxicol., 14, 105-110.
- Anders, M.W. and Livesey, J.C. (1980) Metabolism of 1,2-dihaloethanes. Banbury Report, 5, 331-341.
- Arferllini, G, Bartoli, S., Colacci, A., Mazzullo, M., Galli, M.C., Prodi, G and Grilli, S. (1984) In vivo and in vitro binding of 1,2-dibromoethane and 1,2-dichloroethane to macromolecules in rat and mouse organs. J. Cancer Res. Clin. Oncol., 108, 204-213.
- Armstrong, M.J. and Galloway, S.M. (1993) Micronuclei induced in peripheral blood of Eµ-PIM-1 transgenic mice by chronic oral treatment with 2-acetylaminofluorene or benzene but not with diethyl-nitrosamine or 1,2-dichloroethane. Mutat. Res., 302, 61-70.
- Arthur D. Little, Inc. (1983) Cell transformation assays of 11 chlorinated hydrocarbon analogs. EPA Doc. No.40+8324457, NTIS OTS No. 0509392.
- Baertsch, A., Lutz, W.K. and Schlatter, C. (1991) Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat. Arch. Toxicol., 65, 169-176.
- Barbash, J.E. and Reinhard, M.,(1989), Abiotic Dehalogenation of 1,2-Dichloroethane and 1,2-Dibromoethne in Aqueous Solution Containing Hydrogen Disulfide. Environ. Sci. Technol., 23, 1349-1357(IPCSEHC 176 から引用)
- Barber, E.D., Donish, W.H. and Mueller, K.R. (1981) A procedure for the quantitative measurement of the mutagenicity of volatile liquids in the Ames Salmonella/microsome assay. Mutat. Res., 90, 31-48.
- Barrows, M.E., Petrocelli, S.R., Macek, K.J. and Carroll, J.J. (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis macrochirius). In: Haque R. ed. Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Ann Arbor, Michigan, Ann Arber Science Publishers, Chapter 24, pp 379-392 (quoted from IPCS, 1995).
- Barsoum, GS., Saad, K. (1934) Relative toxicity of certain chlorine derivatives of the aliphatic series. Quart. J. Pharm. Pharmacol., 7, 205-214 (quoted from OECD, 2002).
- Behechti et al. (1995) Toxucuty of Chlorinated Alkanes on the Alga Scenedesmus subspicatus in a closed Test Vessel. Fresenius environ. Bull., 4, 148-153.
- Benoit, D. A., Puglisi, F. A. and Olson, D. L. (1982) A fathead minnow Pimephales promelas early life stage toxicity test method evaluation and exposure to four organic chemicals. Environmental Pollution (Series A), 28, 189-197.
- Black, J. A., Birge, W. J., McDonnell, W. E., Westerman, A. G and Ramey, B. A. (1982) The aquatic toxicity of organic compounds to embryo-larval stages of fish and amphibians. Lexington, Kentucky, University of Kentucky (Research Report No. 133).

¹⁾ The database search was conducted in April 2004, and the bibliography has been updated with new data from source information, etc. Research was also conducted in April 2004 on new risk assessment reports by international organizations, some of which were added to the bibliography as a major study.

- Blum, D. J. W. and Speece, R. E. (1991) A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. Research Journal WPCF, 63, 198-207.
- Bove, F.J., Fulcome, M.C., Klotz, J.B., Esmart, J., Dufficy, E.M. and Savrin, J.E. (1995) Public drinking water contaminat and birth outcomes. Am. J. Epidemiol., 141, 850-862.
- Brem, H., Stein, A.B. and Rosenkranz, H.S. (1974) The mutagenicity and DNA-modifying effect of haloalkanes. Cancer Res., 34, 2576-2579.
- Bringmann, G (1978) Bestimmung der biologischen Schadwirkung wassergefährdender Stoffe gegen Protozoa. Z.Wasser Abwasser Forschung, 11,210-215.
- Bringmann, G and Kuhn, R. (1976) VergleichendeBefunde der Schadwirkung wassergefahrdender Stoffe gegen Bakterien (Pseudomonas putida) und Blaualgen (Microcystis aeruginosa). Gwf-wasser/abwasser, 117, 410-413.
- Bringmann, G and Kuhn, R. (1977) Grenzwerte der Schadwirkung wassergefährdender Stoffe gegen Bakterien (Pseudomonas putida) und Grünalgen (Scenedesmus quadricauda). Z.Wasser Abwasser Forschung, 10, 87-98.
- Bringmann, G and Kuhn, R. (1980a) Bestimmung der biologischen Schadwirukung wassergefährdender Stoffe gegen Ptotozoen II. Bakterienfressende Ciliaten. Z. Wasser Abwasser Forschung, 1, 26-31.
- Bringmann, G and Kuhn, R. (1980b) Bestimmung der biologischen Schadwirukung wassergefährdender Stoffe gegen Ptotozoen III. Saprozoische Flagellaten. Z. Wasser Abwasser Forschung, 13, 170-173.
- Cheever, K.L., Cholakis, J.M., El-Hawari, A.M., Kovatch, R.M. and Weisburger, E.K. (1990) Ethylene dichloride: The influence of disulfiram or ethanol on oncogenicity, metabolism, and DNA covalent binding in rats. Fundam. Appl. Toxicol., 14, 243-261.
- Cheng, T.J. Chou, P.Y., Huang, M.L., Du, Ch.L., Wong, R.H. and Chen, P.Ch. (2000) Increased sister chromatid exchange frequencies in workers with exposure to low lever of ethylene dichloride. Mutat. Res., 470, 109-114 (quoted from OECD, 2002).
- Crebelli, R. and Carere, A. (1988) Genotoxic activity of halogenated aliphatic hydrocarbons in Aspergillus nidulans. J. Occup. Toxicol., 8, 437-442.
- Crespi, C.L., Seixas, GM., Turner, T.R., Ryan, C.G and Penman, B.W. (1985) Mutagenicity of 1,2-dichloroethane and 1,2-dibromoethane in two human lymphoblastoid cell lines. Mutat. Res., 142, 133-140.
- Daniel, F.B., Robinson, M., Olson, G.R., York, R.G and Condie, L.W. (1994) Ten and ninety-day toxicity studies of 1,2-dichloroethane in Sprague-Dawley rats. Drug Chem Toxicol., 17, 463-77.
- DeMarini, D.M. and Brooks, H.G (1992) Induction of prophage lambda by chloronated organics: detection of some single-species/single-site carcinogens. Environ. Mol. Mutagen., 19, 98-111.
- Dilling, W.L., Tefrtiller N.B. and Kalos GJ. (1975) Evaluation rate and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene and other chlorinated compounds in dilute aqueous solution. Environ. Sci. Technol., 9, 833-838 (quoted from IPCS, 1995).
- Duprat, P., Delsaut, L. and Gradski, D. (1976) Pouvour irritant des principaux solvents chlores aliphatiques sur la peau et les muqueuses oculaires du lapin. Eur. J. Toxicol., 9, 171-177.
- D'Souza, R.W., Francis, W.R., Bruce, R.D. and Andersen, M.E. (1987) Physiologically based pharmacokinetic model for ethylene dichloride and its application in risk assessment. Pharmacokinetics in risk assessment-Drinking water and health, 8, 286-301.

- Ehrenberg, L., Osterman-Golkar, S., Singh, D. and Lundqvist, U. (1974) On the reaction kinetics and mutagenic activity of methylating and β-halogenoethylating gasoline additives, Radiat Bot., 15, 185-194
- Ferreri, A.M., Rocchi, P., Capucci, A. and Prodi, G (1983) Induction of Diphtheria toxin-resistent mutants in human cells by halogenated compounds. J. Cancer Res. Clin. Oncol., 105, 111-112.
- Foster, G D. and Tullis R. E. (1984) A quantitative structure-activity relationship between partition coefficients and the acute toxicity of naphthalene derivatives in Artemia sarina nauplii. Aquatic Toxicology, 5, 245-254.
- Foster, G. D. and Tullis R. E. (1985) Environ. Pollution (Series A), 38, 273-281.
- Freitag, D., Ballhorn, L., Behechti, A., Fischer, K. and Thumm W. (1994) Structural configuration and toxicity of chlorinated alkanes. Chemoshere, 28, 253-259.
- Garrison, S.C. and Leadingham, R.S. (1954) A fatal case of ethylene chloride poisoning in an occupational therapy department of a neurophychiatric hospital. Am. J. Phys. Med., 33, 230-237.
- Geiger, D. L., Northcott, C. E., Call, D. J. and Brooke, L. T. ed. (1985) Acute toxicity of organic chemicals to Fathead minnows (Pimephales promelas), Volume II. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior. German Chemical Society, 1994, BUA Report 163, 1,2-Dichloroethane.
- Giri, A.K., Shane S. and Que Hee, S.S. (1988) In vivo siter chromatid exchange induced by 1,2-dichloroethane on bone marrow cells of mice. Environ. Mol. Mutagen., 12, 331-334.
- Hatch, GG, Mamay, P.D., Ayer, M.L., Casto, B.C. and Nesnow, S. (1983) Chemical enhancement of viral transformation in Syrian hamster embryo cells by gaseous and volatile chlorinated methanes and ethanes. Cancer Res., 43, 1945-1950.
- Heppel, L.A., Neal, P.A., Perrin, T.L., Endicott, K.M. and Porterfield V.T. (1945). The toxicology of 1,2-dichloroethane (ethylene) III. Its acute toxicity and the effect of protective agents. J. Pharmacol. Exp. Ther. 84, 53-63.
- Hogstedt, C., Rohlen, O., Berndetsson, B.S. and Axelson, O. (1979) A cohort study of mortality and cancer incidence in ethylene oxide production workers. British J. Industrial Med., 36, 276-280.
- Hueper, W.C. and Smith, C. (1935) Fatal ethylene dichloride poisoning. Am. J. Med. Sci., 189, 778-784.
- IARC (2001) IARC Monograph on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer (http://www.iarc.fr から引用).
- IPCS, International Programme on Chemical Safety (1995) 1,2-dichloroethane (second edition), Environmental Health Criteria 176, WHO, Geneva.
- IPCS, International Programme on Chemical Safety (1999) ICSC, International Chemical Safety Cards, Geneva. (http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/index.htm から引用)
- Industrial Bio-Test Laboratories, Inc. (1971) Four-day static fish toxicity studies with methyl chloride, ethyl chloride, vinyl chloride and ethylene dichloride in bluegills and largemouth bass. 1-5, 31-37. NTIS/OTS 0516114 # 86-870001211, US Department of Commerce, Springfield, VA.
- Jafvert, P. and Wolfe N.L. (1987) Degradation of selected halogenated ethanes in anoxic sediment-water systems. Envron. Toxicol. Chem., 6, 827-837 (quoted from IPCS, 1995).
- Jakobson, I., Wahlberg, J.E., Holmberg, B. and Johansson, G (1982) Uptake via the blood and elimination of 10 organic solvents following epicutaneous exposure of anesthetized guinea pigs. Toxicol. Appl. Pharmacol., 63, 181-187.

- Janssen, D.B., Scheper, A., Dijkhuizen, L. and Witholt, B. (1985) Biodegradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10, Appl. Environ. Microbiol., 49, 673-677.
- Khubutiya, V.A. (1964) Hematological changes in those working with dichloroethane (synopsis). Hyg. Sanit (USSR) 29 125-126 (quoted from U.S. EPA, 1979).
- King, M.T., Beikirch, H., Eckhardt, K., Gocke, E. and Wild, D. (1979) Mutagenicity studies with X-ray-contrast media,analgesics,antipyretics,antirheumatics and some other pharmaceutical drugs in bacterial,drosophila and mammalian test systems. Mutat. Res., 66, 33-43.
- Kramers, P.G.N., Mout, H.C.A., Bissumbhar, B. and Mulder, C.R. (1991) Inhalation exposure in Drosophila mutagenesis assays: experiments with aliphatic halogenated hydrocarbons, with emphasis on the genetic profile of 1,2-dichloroethane. Mutat. Res., 252, 17-33.
- Könemann, H. (1981) Quantitative structure-activity relationship in fish toxicity studies. Toxicology, 19, 209-221.
- Lane, R.W., Riddle, B.L. and Borzelleca, J.F. (1982) Effects of 1,2-Dichloroethane and 1,1,1-Trichloroethane in drinking water on reproduction and development in mice. Toxicol. Appl. Pharmacol., 63, 409-421.
- LeBlanc, G A. (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ. Contam. Toxicol., 24, 684-691.
- Lochhead, H. B. and Close, H.P. (1951) Ethylene dichloride plastic cement: A case of fatal poisoning. J. Am. Med. Assoc., 146 1323 (quoted from U.S. DHHS, 1999).
- Maltoni, C., Valgimigli, L. and Scarnato, C. (1980) Long-term carcinogenic bioassays on ethylene dichloride administered by inhalation to rats and mice. Banbury Report No.5. 3-33.
- Martin, G, Knorpp, K., Huth, K., Heinrich, F. and Mittermayer, C. (1969) Clinical features, pathogenesis and management of dichloroethane poisoning. Germ. Med. Mth., XIV, 62-67.
- Merck (2001) The Merck Index, 13th ed. Merck & Co., Inc., Whitehouse Station, NJ. Mitoma, C., Steeger, T., Jackson, S.E., Wheeler, K.P., Rogers, J.H. and Milman, H.A. (1985) Metabolic disposition study of chlorinated hydrocarbons in rats and mice. Drug Chem. Toxicol., 8, 183-194.
- Morgan, D.L., Bucher, J.R. and Elwell, M.R. (1990) Comparative toxicity of ethylene dichloride in F344/N, Sprague-Dawley and Osborne-mendel rats. Fd. Chem. Toxicol., 28, 839-845.
- Munson, A.E. et al. (1982) In vivo assessment of immnotoxicity. Environ. Health Perspect., 43, 41-52 (quoted from OECD, 2002).
- Murray et al. (1980) NTIS #FYI-AX-0680-0078.
- Nagano, K., Nishizawa, T., Yamamoto, S. and Matsushima, T. (1998) Inhalation carcinogenesis studies of six halogenated hydrocarbones in rats and mice. Advances in the Prevention of Occupational Respiratory Diseases., 741-746.
- NCI (1978) Bioassay of 1,2-dichloroethane for possible carcinogenicity CAS No. 107-06-2. National Cancer Institute, NCI-CG-TR-55, NTIS PB 285 968.
- Neuhauser, E. F., Loehr, R. C., Malecki, M. R., Milligan, D. L. and Durkin, P. R. (1985) The toxicity of selected organic chemicals to the earthworm Eisenia fetida. J. Environ. Qual., 14, 383-388.
- NIOSH (1976) Occupational Exposure to Ethylene Dichloride (1,2-Dichloroethane). National Institute for Occupational Safety and Health. U.S.Department of Health, Education, and Welfare, Washington, D.C. 157 (quoted from U.S. EPA, 1979).
- Nouchi, T., Miura, H., Kanayama, M., Mizuguchi, O. and Takano, T. (1984) Fatal intoxication by

1,2-dichloroethane-a case report. Int. Arch. Occup. Environ. Health, 54, 111-113.

- Nylander, P., Olofsson, H., Rasmuson, B. and Svahlin, H. (1978) Mutagenetic effects of petrol in Drosophila melanogaster I. Effects of benzene and 1,2-dichloroethane. Mutat. Res., 57, 163-167.
- Oak Ridge National Laboratory (ORNL) (1979) Investigations of selected environmental pollutants 1,2-dichloroethane. Oak Ridge, TN: Oak Ridge National Laboratory, 79-105. (quoted from U.S. EPA, 1982)
- OECD, Organization for Economic Cooperation and Development (2002) 1,2-Dichloroethane. SIDS Initial Assessment Report for 14th SIAM,
- Payan, J.P., Beydon, D., Fabry, J.P., Brondeau, M.T., Ban, M. and De Ceaurriz, J. (1993) Urinary thiodiglycolic acid and thioether excretion in male rats dosed with 1,2-Dichloroethane. J. Appl. Toxicol., 13, 417-422.
- Payan, J.P., Saillenfait, A.M., Bonnet, P., Fabry, J.P., Langonne, I. and Sabate, J.P. (1995) Assassment of the developmental toxity and placental transfer of 1.2-dichloroethane in rats. Fundam. Appl. Toxicol., 28, 187-198.
- Pearson, C. R. and McConnell, G (1975) Chlorinated C1 and C2 hydrocarbons in the marine environment. Proc. R. Soc. Lond. B., 189, 305-332.
- Perocco, P. and Prodi, G (1981) DNA damage by haloalkanes in human lymphocytes cultured in vitro. Cancer Lett., 13, 213-218.
- Prezdziak, J and Bakula, S.(1975) Acute poisoning with 1,2-dichloroethane. Wiad.Lek. 28 (11) 983-987. (quoted from U.S. EPA, 1982)
- Rannug, U., Sundvall, A. and Ramel, C. (1978) The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium I. Activation through conjugation with glutathion in vitro. Chem.-Biol. Interactions, 20, 1-16.
- Rao, K.S., Murray, J.S., Deacon., M.M., John, J.A., Calhoun, L.L. and Young, J.T. (1980) Teratogenicity and reproduction studies in animals inhaling ethylene dichloride. Banbury Report 5, 149-166.
- Reid, B. J., Morgan, J. D. and Whelen, M. A. (1982) A Preliminary Examination of the Ethylene Dichloride on the Hatchability of Coho Salmon Eggs (Oncorhynchus kisutch), Ca. Tech. Rep. Fish Aquat. Sci., 1163, 145-153.
- Reitz, R.H., Fox, T.R., Domoradzki, J.Y., Quast, J.F., Langvardt, P. and Watanabe, P.G (1980) Pharmacokinetics and macromolecular interactions of ethylene dichloride: Comparison of oral and inhalation exposure. Banbury Report, 5, 135-148.
- Reitz, R.H., Fox, T.R., Ramsey, J.C., Quast, J.F., Langvardt, P.W. and Watanabe, P.G (1982) Pharmacokinetics and macromolecular interactions of ethylene dichloride in rats after inhalation or gavage. Toxicol. Appl. Pharmacol., 62, 190-204.
- Richter, J. E., Peterson, S. F. and Kleiner, C. F. (1983) Acute and Chronic Toxicity of Some Chlorinated Benzenes, Chlorinated Ethanes, and Tetrachloroethylene to Daphnia magna. Arch. Environ. Contam. Toxicol., 12, 679-684.
- Romert, L., Magnusson, J. and Ramel, C. (1990) The importance of glutathione and glutathione transferase for somatic mutations in Drosophila melanogaster induced in vivo by 1,2-dichloroethane. Carcinogenesis, 11, 1399-1402.
- Sasaki, Y.F., Sakaguchi, M., Yamada, H. and Matsuhashi, T. (1994) Evaluation of micronucleus induction in mice

by four organochlorine pesticides: 1,2-dibromo-3-chloropropane, 1,3-dichloropropene, 1,2-dichloroethane, and nitrofen. MMS Com., 2, 87-93.

- Sasaki, Y.F., Saga, A., Akasaka, M., Ishibashi, S., Yoshida, K., Su, Ying Quan, Matsusaka, N. and Tsuda, S. (1998) Detection of in vivo genotoxicity of haloalkanes and haloalkenes carcinogenic to rodents by the alkaline single cell gel electrophoresis (comet) assay in multiple mouse organs. Mutat. Res., 419, 13-20.
- Sayers, R.R., Yant, W.P., Waite, C.P. and Patty, F.A. (1930) Acute Responces of guinea pigs to vapors of some new commercial organic compounds: I .Ethylene dichloride. Public Health Rep. 45 225-239. (quoted from U.S. EPA, 1979)
- Schiinborn, H., Prellwitz, W. and Baum, P. (1970) Consumption coagulation pathology of 1,2-dichloroethane poisoning. Klin Wochenschr 48822824. (German) (quoted from U.S. EPA, 1979)
- Schlacter, M.M., Crawford, A.A., John, J.A., Lederer, T.S., Murray, F.J., Murray, J.S., and Pilny, M.K. (1979) The effects of inhalated ethylene dichloride on embryonal and feral development in rats and rabbits. OTS 05 15988.
- Schubert, U., Wisanowsky, L. and Kull, U. (1995) Determination of phytotoxicity of several volatile organic compounds by investigating the germination pattern of tobacco pollen. J. Plant Physiol., 145, 514-518.
- Schultz, K., Ghosh, L. and Banerjee, S. (1992) Neoplastic expression in murine cells induced by halogenated hydrocarbons. In Vitro Cell. Dev. Biol., 28A, 267-272.
- Spencer, H.C., Rowe, V.K., Adams, E.M., McCollister, D.D. and Irish, D.D. (1951) Vapor toxicity of ethylene dichloride determined by experiments on laboratory animals. Am. Med. Assoc. Arch. Ind. Hyg., 4, 482-493.
- Spreafico, F., Zuccato, E., Marcucci, F., Sironi, M., Paglialunga, S., Madonna, M. and Mussini, E. (1980) Pharmacokinetics of ethylene dichloride in rats treated by different routes and its long-term inhalatory toxicity. Banbury Report, 5, 107-133.
- SRC, Syracuse Research Corporation (2002) AopWin Estimation Software, ver. 1.90, North Syracuse, NY.
- SRC, Syracuse Research Corporation (2002) KowWin Estimation Software, ver. 1.66, North Syracuse, NY.
- Stauffer Chemical Co. (1973). Four toxicological studies of 1,2-dichloroethane. EPA Doc. No. 86-870000606, NTIS OTS No. OTS0515133.
- Storer, R.D. and Conolly, R.B. (1983) Comparative in vivo genotoxicity and acute hepatoxicity of three 1,2-dihaloethanes. Carcinogenesis, 4, 1491-1494.
- Storer, R.D. and Conolly, R.B. (1985) An investigation of role of microsomal oxidative metabolism in the in vivo genotoxicity of 1,2-dichloroethane. Toxicol. Appl. Pharmacol. 77, 36-46.
- Storer, R.D., Jackson, N.M. and Conolly, R.B. (1984) In vivo genotoxic and acute hepatotoxicity of 1,2-dichloroethane in mice: comparison of oral, intraperitoneal and inhalation routes of exposure. Cancer Res., 44, 4267-4271.
- Tabak, H.H., Quave S.A., Mashni C.I. and Barth E.F.(1981), Biodegradability studies with organic priority pollutant compounds, J Water Pollut. Control Fed., 53, 1513-1518 (quoted from IPCS, 1995)
- Tafazoli, M., Baeten, A., Geerlings, P. and Kirsch-Volders, K. (1998) In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lyphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential. Mutagenesis, 13, 115-126.

- Tan, E.L. and Hsie, A.W. (1981) Mutagenicity and cytotoxicity of haloethanes as studied in the CHO/HGPRT system. Mutat. Res., 90, 183-191.
- Tsuruta, H. (1975) Percutaneous absorption of organic solvents: 1) Comparative study of the in vivo percutaneous absorption of chlorinate solvents in mice. Industrial Health, 13, 227-236.
- Union Carbide Corp. (1987) NTIS/OTIS 0515565 #86-870001403. (quoted from OECD, 2002)
- U.S. DHHS (1999) Toxicological Profile for 1,2-Dichloroethane (Draft). Agency for Toxic Substances and Disease Registry, United States Department of Health and Human Services.
- U.S. EPA (1979) Investigation of selected environmental pollutants: 1,2-dichloroethane. Oak Ridge National Laboratory, ORNL/EIS-148, EPA-560/2-78-006, NTIS PB-295 865 United States Environmental Protection Agency.
- U.S. EPA (1982) An exposure and risk assessment for dichloroethanes. Arthur D. Little, Inc., EPA-440/4-85-009, NTIS PB 85-220564, United States Environmenral Protection Agency
- U.S. EPA (1985) Health and environmental effects profile for dichloroethanes. EPA Doc. No. 600/X-85/359, NTIS PB88-178777, United States Environmental Protection Agency.
- U.S. EPA (2002) Integrated Risk Information System, National Library of Medicine, United States Environmenral Protection Agency (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?IRIS から引用).
- U.S. NIST, National Institute of Standards and Technology (2002) NIST Library of 54K compounds. Gaithersburg, MD.
- U.S. NLM, National Library of Medicine (2001) HSDB, Hazardous Substances Data Bank, Bethesda, MD. (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB から引用)
- U.S. NTP (1991) Toxicity Studies of 1,2-dichloroethane (ethylene dichloride) in F344/N rats, Sprague Dawley rats, Osborne-Mendel rats, and B6C3F1 mice (drinking water and gavage studies),
- National Toxicology Program, NTP TOX4, NIH publication No. 91-3123, MTIS PB91-185363.
- U.S. NTP (2002) 9th Repoprt on Carcinogens, U.S. Department of Health and Human Services Public Health Service, National Toxicology Program,
- Valencia, R., Abrahamson, S., Lee, W.R., Von Halle, E.S., Woodruff, R.C., Wurgler, F.E. and Zimmering, S. (1984) Chromosome mutation tests for mutagenesis in Drosophila melanogaster. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res., 134, 61-88.
- Van Duuren, B.L., Goldschmidt, B.M., Loewengart, G, Smith, A.C., Melchionne, S., Seldman, I., and Roth, D (1979) Carcinogenicity of halogenated olefinic and aliphatic hydrocarbons in mice. J. Natl. Cancer Inst., 63, 1433-1439.
- Veith, G D., Call, D. J. and Brooke, L. T. (1983) Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Can. J. Fish Aquat. Sci., 40, 743-748.
- Vogel, E.W. and Nivard, M.J.M. (1993) Performance of 181 chemicals in a Drosophila aasay predominantly monitoring interchromosomal mitotic recombination. Mutagenesis, 8, 57-81.
- Walbridge, C. T., Fiandt, J. T., Phipps, G L. and Holcombe, G W. (1983) Acute Toxicity of Ten Chlorinated Aliphatic Hydrocarbons to the Fathead Minnow (Pimephales promelas). Arch Environ. Contam. Toxicol., 12, 661-666.
- Ward, J.M. (1980) The carcinogenicity of ethylene dichloride in Osborne-Mendel rats and B6C3F1 mice. Banbury Report 5, 35-53.

- Withey, J.R. and Colins, B.T. (1980) Chlorinated aliphatic hydrocarbons used in the foods industry: The comparative pharmacokinetics of methylene chloride, 1,2-dichloroethane, chloroform and trichloroethylene after i.v. administration in the rat. J. Environ. Pathol. Toxicol., 3, 313-332.
- Withey, J.R. and Karpinski, K. (1985) The fetal distribution of some aliphatic chlorinated hydrocarbons in the rat after vapor phase exposure. Biol. Res. Preg. Perinatol., 6, 79-88.
- Withey, J.R., Collins, B.T. and Collins, P.G (1983) Effect of vehicle on the pharmacokinetics and uptake of foru halogenated hydrocarbons from the gastrointestinal tract of the rat. J. Appl. Toxicol., 3, 299-253.
- Yllner, S. (1971) Metabolism of 1,2-Dichloroethane-14C in the mouse. Acta Pharmacol. Toxicol., 30, 257-265.
- Yodaiken, R.E. and Babcock, J.R. (1973) 1,2-dichloroethane poisoning. Arch. Environ. Health, 26, 281-284.
- Zhao, S.F., Zhang, X.C., Bao, Y.S. (1989) The study on the effects of 1,2-dichoroethane on reproductive function. Chinese J. Prevent Med. 23 199-202. (quoted from U.S. DHHS, 1999)

Chemical product 14303, The Chemical Daily, 2003

Chemical Substance Hazard Data, compiled by Chemicals Evaluation and Research Institute, Japan, edited by the Chemical Management Policy Division, Ministry of Economy, Trade and Industry, published by Daiichi Hoki, Tokyo, 2002 (on the website: <u>http://www.cerij.or.jp/ceri_jp/koukai/sheet/sheet_indx4.htm</u>, <u>http://www.safe.nite.go.jp/data/index/pk_hyoka.hyoka_home</u>)</u>

Ecological Effect Test of Chemical Substance by Ministry of the Environment in FY1996, Ministry of the Environment, 1996

Growth inhibition test of 1,2-dichloroethane on Selenastrum capricornutum, No.91501, Chemicals Inspection & Testing Institute, Japan, March 28, 1996

Acute swimming inhibition test of 1,2-dichloroethane on Daphnia magna, No.91502, Chemicals Inspection & Testing Institute, Japan, March 28, 1996

Reproduction inhibition test of 1,2-dichloroethane on Daphnia Manga, No.91503, Chemicals Inspection & Testing Institute, Japan, April 5, 1996

Acute toxicity test of 1,2-dichloroethane on Orizias latipes, No.91504, Chemicals Inspection & Testing Institute, Japan, March 28, 1996

Yearbook of Chemical Industry Statistics in FY2001, Ministry of Economy, Trade and Industry, 2002

Announcement No.53, Ministry of Economy, Trade and Industry, 2003 (Official Gazette, March 11, 2003)

Summary of Survey of Reported Amount Emitted, Amount Transferred, and Unreported Amount Emitted for FY2001 on the basis of the Law Concerning Reporting, etc. of Releases to the Environment of Specific Chemical Substances and Promoting Improvements in Their Management, (PRTR Law: Pollutant Release and Transfer Register Law), Ministry of Economy, Trade and Industry, and Ministry of the Environment, 2003a

Summary of Estimation Methods of Unreported Amount Emitted on the basis of the PRTR Law, Ministry of Economy, Trade and Industry, and Ministry of the Environment, 2003b (excerpted from: http://www.meti.go.jp/policy/chemical_management/kohyo/todokedegaisanshutudata.htm) Trade

Statistics, Ministry of Finance, 2003 (excerpted from: http://www.customs.go.jp/toukei/info/)

- Project for Development of Chemical Substance Risk Assessment Technology and Risk Assessment Methods (2003 Report) (NEDO Project), National Institute of Technology and Evaluation, 2004
- NITE Chemical Management Information, Ministry of International Trade and Industry, 1978 (Official Gazette, December 28, 1978) (excerpted from: <u>http://www.nite.go.jp</u>)
- Implementation of PRTR by Responsible Care Activities of JCIA (2002 Report on Chemical Substance emission), Japan Chemical Industry Association, 2002
- The Japan Society for Occupational Health, Recommendation of Occupational Exposure Limits, J Occup Health, 43, 95-119

Name of the implementing agency, supervisor, and person in charge of conducting hazard assessment

Name of the implementing agency conducting hazard assessment: National Institute of Technology and Evaluation

Name of supervisor, and person in charge of conducting hazard assessment Mineo Takatsuki Supervisor of hazard assessment Person in charge of conducting hazard assessment 1. Chemical substance identification information Koji Hayashi 2. General information Koji Hayashi 3. Physical-Chemical Properties Koji Hayashi 4. Source information National Institute of Technology and Evaluation 5. Environmental fate Chiaki Miura Kiyohiro Kubota 6. Ecological impact assessment Masaki Nosaka Sunao Aso 7. Human health impact assessment Naoko Okuda Satoko Ishikawa

External reviewers of Chemical substance Hazard Assessment Report

Impact on living creatures in the environment:

Yuji Oshima, Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Sciences, Kyushu University

Human health effects:

Dai Nakae, Department of Pathology, Sasaki Institute, Sasaki Foundation

Revised record

March 2002	Documentation of original plan						
December 2002	Ver.1.0						
	Approval of deliberation of 14th Safety Assessment and Management						
	Subcommittee (Chemical Substance Council/Examination Meeting, METI)						
September 2004	Ver.1.1						
	Correction by the change of the "Guideline for the Documentation of Initial Risk						
	Assessment Report"						
	Addition of new information						